×

zbMATH — the first resource for mathematics

Second-order supersymmetric periodic potentials. (English) Zbl 1115.81393
Summary: Irreducible second-order SUSY transformations are applied to periodic Hamiltonians in order to find physically acceptable partner potentials with the same band structure as the initial one. Lamé’s potentials are analyzed in the same context. The main differences with the SUSY approach to potentials allowing for a discrete spectrum are also discussed.

MSC:
81U15 Exactly and quasi-solvable systems arising in quantum theory
81Q60 Supersymmetry and quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schrödinger, E., Proc. R. irish acad. A, 46, 183, (1940)
[2] P.A.M. Dirac, The principles of Quantum Mechanics, Oxford University Press, Oxford, 1947. · Zbl 0030.04801
[3] Infeld, L.; Hull, T.E., Rev. mod. phys., 23, 21, (1951)
[4] Cooper, F.; Khare, A.; Sukhatme, U., Phys. rep., 251, 267, (1995)
[5] Witten, E., Nucl. phys. B, 188, 513, (1981)
[6] Mielnik, B., J. math. phys., 25, 3387, (1984)
[7] Nieto, M.M., Phys. lett. B, 145, 208, (1984)
[8] Sukumar, C.V., J. phys. A, 18, L57, (1985) · Zbl 0586.35020
[9] Sukumar, C.V., J. phys. A, 18, 2917, (1985)
[10] Sukumar, C.V., J. phys. A, 18, 2937, (1985)
[11] Andrianov, A.A.; Ioffe, M.V.; Spiridonov, V., Phys. lett. A, 174, 273, (1993)
[12] Andrianov, A.A.; Borisov, N.V.; Ioffe, M.V., Phys. lett. A, 105, 19, (1984)
[13] Bagrov, V.G.; Samsonov, B.F., Theor. math. phys., 104, 1051, (1995)
[14] Bagrov, V.G.; Samsonov, B.F., Phys. part. nucl., 28, 374, (1997)
[15] Bagrov, V.G.; Samsonov, B.F., Jetp, 82, 593, (1996)
[16] Bagrov, V.G.; Samsonov, B.F., J. phys. A, 29, 1011, (1996)
[17] Fernández C, D.J.C., Int. J. mod. phys. A, 12, 171, (1997)
[18] Fernández C, D.J.C.; Glasser, M.L.; Nieto, L.M., Phys. lett. A, 240, 15, (1998)
[19] Fernández C, D.J.C.; Hussin, V.; Mielnik, B., Phys. lett. A, 244, 309, (1998) · Zbl 0941.81022
[20] Fernández C, D.J.C.; Hussin, V., J. phys. A, 32, 3603, (1999)
[21] Rosas-Ortiz, J.O., J. phys. A, 31, L507, (1999)
[22] Rosas-Ortiz, J.O., J. phys. A, 31, 10163, (1998)
[23] Andrianov, A.A.; Ioffe, M.V.; Nishniadnidze, D.N., Theor. math. phys. A, 104, 463, (1995)
[24] Samsonov, B.F., Mod. phys. lett. A, 11, 1563, (1996)
[25] Samsonov, B.F., Phys. lett. A, 263, 274, (1999)
[26] S. Novikov, S.V. Manakov, L.P. Pitaevskii, V.E. Zakharov, Theory of Solitons, Plenum, New York, 1984. · Zbl 0598.35002
[27] Sutcliffe, P.M., J. phys. A, 29, 5187, (1996)
[28] Brihaye, Y.; Giller, S.; Kosinski, P.; Kunz, J., Phys. lett. B, 293, 383, (1992)
[29] Dunne, G.; Feinberg, J., Phys. rev. D, 57, 1271, (1998)
[30] Krein, M.G., Dan sssr, 113, 970, (1957)
[31] W. Magnus, S. Winkler, Hill’s equation, Wiley, New York, 1981. · Zbl 1141.34002
[32] F.A. Berezin, M.A. Shubin, The Schrödinger equation, Moscow University Press, Moscow, 1983.
[33] F.M. Arscott, Periodic differential equations Cambridge University Press, Cambridge, 1981. · Zbl 0518.39001
[34] Khare, A.; Sukhatme, U., J. math. phys., 40, 5473, (1999)
[35] Patera, J.; Winternitz, P., J. math. phys., 14, 1130, (1973)
[36] Alhassid, Y.; Gürsey, F.; Iachello, F., Phys. rev. lett., 50, 873, (1983)
[37] Li, H.; Kuznesov, D., Phys. rev. lett., 83, 1283, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.