×

A finite volume solver for 1D shallow-water equations applied to an actual river. (English) Zbl 1115.76355

Summary: This paper describes the numerical solution of the 1D shallow-water equations by a finite volume scheme based on the Roe solver. In the first part, the 1D shallow-water equations are presented. These equations model the free-surface flows in a river. This set of equations is widely used for applications: dam-break waves, reservoir emptying, flooding, etc. The main feature of these equations is the presence of a non-conservative term in the momentum equation in the case of an actual river. In order to apply schemes well adapted to conservative equations, this term is split in two terms: a conservative one which is kept on the left-hand side of the equation of momentum and the non-conservative part is introduced as a source term on the right-hand side. In the second section, we describe the scheme based on a Roe Solver for the homogeneous problem. Next, the numerical treatment of the source term which is the essential point of the numerical modelisation is described. The source term is split in two components: one is upwinded and the other is treated according to a centred discretization. By using this method for the discretization of the source term, one gets the right behaviour for steady flow. Finally, in the last part, the problem of validation is tackled. Most of the numerical tests have been defined for a working group about dam-break wave simulation. A real dam-break wave simulation will be shown.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
86A05 Hydrology, hydrography, oceanography

Software:

MASCARET; HE-E1GODF
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Plain flooding: near field and far field simulations. Proceedings of the Specialty Conference, Modelling of Flood Propagation over Initially Dry Areas, 1994.
[2] Etude des équations aux dérivées partielles hyperboliques raides. Application aux équations de Saint-Venant. Thesis, Université de Rouen, France, 1997.
[3] Monthe, Computer Methods in Applied Mechanics and Engineering 15 pp 1– (1999)
[4] Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag: Berlin, Heidelberg, 1997.
[5] Free surface flow modelling on a complex topography. Proceedings of the Specialty Conference, Modelling of Flood Propagation over Initially Dry Areas, 1994.
[6] Modélisation et simulation de la propagation de l’onde de rupture de barrage. Thesis, Université Jean Monnet, Saint-Etienne, France, 1995.
[7] Glaister, Journal of Hydraulic Research 26 pp 293– (1988)
[8] Analyse de quelques méthodes volumes finis non structurés pour la résolution des équations d’Euler. Thesis, Université de Paris VI, France, 1993.
[9] Modélisation et simulation numérique d’écoulements hydrauliques et de ruissellement en topographie quelconque. Thesis, Université de Bordeaux I, France, 1997.
[10] Greenberg, SIAM Journal on Numerical Analysis 33 pp 1– (1996) · Zbl 0876.65064
[11] Solveur de Riemann approché pour un sysrème hyperbolique non conservatif issu de la turbulence compressible. Rapport EDF HE-41/95/009/A, Département LNH, 6, Quai Watier, Chatou, France.
[12] Un schéma équilibre pour les écoulements à surface libre instationnaires avec bathymétrie. Thesis, Université de Bordeaux, France, 1996.
[13] Brun, Journal of Computational Physics 151 pp 990– (1999) · Zbl 0959.76050
[14] A new general Riemann solver for the shallow-water equations with friction and topography, 1999. Available in the conservation law preprint server http://www.math.ntnu.no/conservation/.
[15] Buffard, Comptes Rendus de l’Académie des Sciences I-326 pp 385– (1998)
[16] Finite volume methods. Handbook for Numerical Analysis. (eds), North-Holland, 1999.
[17] Roe, Journal of Computational Physics 43 pp 357– (1981) · Zbl 0474.65066
[18] Roe, Lectures in Applied Mathematics 22 pp 163– (1985)
[19] Numerical methods for conservation laws. Lecture in mathematics ETH Zurich. Birkhaüser: Basel/Boston/Berlin, 1990.
[20] Estudio de esquemeas descentrados para su application a las leys de conversacion hiperbolicas con terminos fuente. Thesis, Universidad Santiago de Compostela, Spain, Vazquez-Cendon 1994.
[21] Vazquez-Cendon, Journal of Computational Physics 148 pp 497– (1999) · Zbl 0931.76055
[22] Working Group on Dam-Break Modelling. Meeting report, Université Catholique de Louvain and Université Libre de Bruxelles, Belgique, 1997.
[23] Proceedings of the 2nd workshop on dam-break wave simulation. Technical report HE-43/97/016/A, Département Laboratoire National d’Hydraulique, 6, Quai Watier, Chatou, France.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.