×

zbMATH — the first resource for mathematics

On the active response of soft living tissues. (English) Zbl 1115.74349
Summary: Soft tissues exhibit a nonlinear, essentially incompressible (visco-) elastic response; a key issue is the active nature of muscle fibres, in other words their ability to contract and relax in response to biochemical signals. Here we present a continuum model able to describe an active elastic medium.

MSC:
74L15 Biomechanical solid mechanics
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fung, Y.C.: Biomechanics: Mechanical Properties of Living Tissues. 2nd edn. Springer, New York (1993)
[2] Humphrey, J.D.: Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. Springer, New York (2002)
[3] Hayashi, K.: Mechanical properties of soft tissues and arterial walls. In: Holzapfel, G.A., Ogden, R.W. (eds.) Biomechanics of Soft Tissues in Cardiovascular Systems. Cism Courses and Lectures, no. 441, pp. 15–64. Springer, Berlin Heidelberg New York (2003) · Zbl 1039.92005
[4] Pelce, P., Sun, J.: A simple model for excitation-contraction coupling in the heart. Chaos Solitons Fractals 5, 383–391 (1995) · Zbl 0925.92052 · doi:10.1016/0960-0779(93)E0030-F
[5] Negroni, J.A., Lascano, E.L.: A cardiac muscle model relating sarcomere dynamics to calcium kinetics. J. Mol. Cell. Cardiol. 28, 915–929 (1996) · doi:10.1006/jmcc.1996.0086
[6] Chudin, E., Garfinkel, A., Weiss, J., Karplus, W., Kogan, B.: Wave propagation in cardiac tissue and effects of intracellular calcium dynamics (computer simulation study). Prog. Biophys. Mol. Biol. 69, 225–236 (1998) · doi:10.1016/S0079-6107(98)00009-1
[7] Okada, J., Sugiura, S., Nishimura, S., Hisada, T.: Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method. Am. J. Physiol., Cell Physiol. 288, C510–C522 (2005) · doi:10.1152/ajpcell.00261.2004
[8] Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elast. 61, 113–141 (2000). · Zbl 1071.74659 · doi:10.1023/A:1011084330767
[9] Usyk, T.P., Mazhari, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elast. 61, 143–164 (2000) · Zbl 0974.92002 · doi:10.1023/A:1010883920374
[10] Nash, M.P., Panfilov, A.V.: Electromechanical model of excitable tissue to study reentrant cardiac arrhytmias. Prog. Biophys. Mol. Biol. 85, 501–522 (2004) · doi:10.1016/j.pbiomolbio.2004.01.016
[11] Panfilov, A.V., Keldermann, R.H., Nash, M.P.: Self-organized pacemakers in a coupled reaction-diffusion-mechanics system. Phys. Rev. Lett. 95, 258104-1–258104-4 (2005) · doi:10.1103/PhysRevLett.95.258104
[12] Rachev, A., Hayashi, K.: Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distribution in arteries. Ann. Biomed. Eng. 27, 459–468 (1999) · doi:10.1114/1.191
[13] Humphrey, J.D., Wilson, E.: A potential role of smooth muscle tone in early hypertension: a theoretical study. J. Biomech. 36, 1595–1601 (2003) · doi:10.1016/S0021-9290(03)00178-7
[14] Cherubini, C., Filippi, S., Nardinocchi, P., Teresi, L.: Electromechanical modeling of excitable tissues. (2007) (forthcoming)
[15] Sachse, F.B.: Computational Cardiology. Springer, Berlin Heidelberg New York (2004) · Zbl 1051.92025
[16] Holzapfel, G.A., Gasser, T., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1), 1–48 (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[17] Rivlin, R.S.: Stability of pure homogeneous deformations of an elastic cube under dead loading. Quarterly Appl. Math. 32(3), 265–271 (1974) · Zbl 0324.73039
[18] Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues – with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) · doi:10.1115/1.3149545
[19] DiCarlo, A., Quiligotti, S.: Growth & remodeling. Mech. Res. Commun. 29, 449–456 (2002) · Zbl 1056.74005 · doi:10.1016/S0093-6413(02)00297-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.