×

zbMATH — the first resource for mathematics

Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: Discrete singular convolution (DSC) approach. (English) Zbl 1115.74058
Summary: We present a numerical study of free vibrations of laminated conical and cylindrical shells. The analysis is carried out using Love first-order thin shell theory and using discrete singular convolution (DSC) method. Numerical results are presented graphically for different geometric and material parameters. Free vibrations of isotropic cylindrical shells and annular plates are treated as special cases. The effects of circumferential wave number and number of layers on frequencies are also discussed. The numerical results show that the present method is quite easy to implement, accurate and efficient for the problems considered.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bacon, M.; Bert, C.W., Unsymmetric free vibrations of orthotropic sandwich shells of revolution, Aiaa j., 5, 413-417, (1967) · Zbl 0145.46003
[2] Bert, C.W.; Francis, P.H., Composite material mechanics: structural mechanics, Aiaa j., 12, 1173-1186, (1974) · Zbl 0297.73053
[3] Chang, C.H., Vibration of conical shells, Shock vibration digest, 13, 1, 9-17, (1981)
[4] Ö. Civalek, Finite Element Analyses of Plates and Shells, Elazi\(\breve{\operatorname{g}}\), Firat University, 1998 (in Turkish).
[5] Ö.Civalek, Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature (PDQ), Ph.D. Thesis, Firat University, Elazig, 2004 (in Turkish).
[6] Civalek, Ö., An efficient method for free vibration analysis of rotating truncated conical shells, Internat. J. pressure vessels piping, 83, 1-12, (2006)
[7] Hua, L., Frequency characteristics of a rotating truncated circular layered conical shell, Composite structures, 50, 59-68, (2000)
[8] Hua, L., Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions, Composites sci. technol., 60, 2945-2955, (2000)
[9] Hua, L.; Lam, K.Y., The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure, Internat. J. numer. methods eng., 48, 1703-1722, (2000) · Zbl 0989.74078
[10] Irie, T.; Yamada, G.; Kaneko, Y., Free vibration of a conical shell with variable thickness, J. sound vibration, 82, 83-94, (1982) · Zbl 0507.73055
[11] Irie, T.; Yamada, G.; Tanaka, K., Natural frequencies of truncated conical shells, J. sound vibration, 92, 3, 447-453, (1984)
[12] Kapania, R.K., A review on the analysis of laminated shells, Trans. ASME J. pressure vessel technol., 111, 88-96, (1989)
[13] Lam, K.Y., Vibration analysis of rotating truncated circular conical shell, Internat. J. solids and structures, 34, 17, 2183-2197, (1997) · Zbl 0944.74560
[14] Lam, K.Y.; Loy, C.T., Analysis of rotating laminated cylindrical shells by different shell theories, J. sound vibration, 186, 1, 23-35, (1995) · Zbl 0982.74511
[15] A.W. Leissa, Vibration of shells, NASA, SP-288, 1973. · Zbl 0268.73033
[16] Liew, K.M.; Feng, Z.C., Vibration characteristics of conical shell panels with three-dimensional flexibility, J. appl. mech., 67, 2, 314-320, (2000) · Zbl 1110.74557
[17] Liew, K.M.; Lim, C.W., Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness, Aiaa j., 32, 2, 387-396, (1994)
[18] Liew, K.M.; Lim, C.W., Vibration of perforated doubly-curved shallow shells with rounded corners, Internat. J. solids and structures, 31, 11, 1519-1536, (1994) · Zbl 0946.74529
[19] Liew, K.M.; Lim, M.K.; Lim, C.W.; Li, D.B.; Zhang, Y.R., Effects of initial twist and thickness variation on the vibration behaviour of shallow conical shells, J. sound vibration, 180, 2, 272-296, (1995)
[20] Liew, K.M.; Ng, T.Y.; Zhao, X., Vibration of axially loaded rotating cross-ply laminated cylindrical shells via Ritz method, J. eng. mech. ASCE, 128, 9, 1001-1007, (2002)
[21] Liew, K.M.; Ng, T.Y.; Zhao, X., Free vibration analysis of conical shells via the element-free KP-Ritz method, J. sound vibration, 281, 3-5, 627-645, (2005)
[22] Lim, C.W.; Kitipornchai, S., Effects of subtended and vertex angles of the free vibration of open conical shell panels: a conical co-ordinate approach, J. sound vibration, 219, 5, 813-835, (1999)
[23] Lim, C.W.; Li, Z.R.; Wei, G.W., DSC-Ritz method for high-mode frequency analysis of thick shallow shells, Internat. J. numer. methods eng., 62, 205-232, (2005) · Zbl 1179.74178
[24] Lim, C.W.; Li, Z.R.; Xiang, Y.; Wei, G.W.; Wang, C.M., On the missing modes when using the exact frequency relationship between Kirchhoff and Mindlin plates, Adv. vibration eng., 4, 221-248, (2005)
[25] Lim, C.W.; Liew, K.M., A pb-2 Ritz formulation for flexural vibration of shallow cylindrical shells of rectangular planform, J. sound vibration, 173, 3, 343-375, (1994) · Zbl 0925.73926
[26] Lim, C.W.; Liew, K.M., Vibratory behaviour of shallow conical shells by a global Ritz formulation, Eng. structures, 17, 1, 63-70, (1995)
[27] Lim, C.W.; Liew, K.M., Vibration of shallow conical shells with shear flexibility: a first-order theory, Internat. J. solids and structures, 33, 4, 451-468, (1996) · Zbl 0900.73386
[28] Lim, C.W.; Liew, K.M.; Kitipornchai, S., Free vibration of pretwisted, cantilevered composite shallow conical, Aiaa j., 35, 327-333, (1995) · Zbl 0883.73042
[29] Lim, C.W.; Liew, K.M.; Kitipornchai, S., Vibration of cantilevered laminated composite shallow conical shells, Internat. J. solids and structures, 35, 15, 1695-1707, (1998) · Zbl 0934.74032
[30] Love, A.E.H., On the small free vibrations and deformations of thin elastic shells, Philos. trans. roy. soc. London, 179A, 491-546, (1988)
[31] Ng, C.H.W.; Zhao, Y.B.; Wei, G.W., Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates, Comput. methods appl. mech. eng., 193, 2483-2506, (2004) · Zbl 1067.74600
[32] Reddy, J.N., Mechanics of composite plates and shells, theory and analysis, (1996), CRC Press Boca Raton, FL
[33] Shu, C., Free vibration analysis of composite laminated conical shells by generalized differential quadrature, J. sound vibration, 194, 4, 587-604, (1996) · Zbl 1232.74034
[34] Shu, C., An efficient approach for free vibration analysis of conical shells, Internat. J. mech. sci., 38, 8/9, 935-949, (1996) · Zbl 0857.73079
[35] Shu, C.; Du, H., Free vibration analysis of laminated composite cylindrical shells by DQM, Composites part B, 28, 267-274, (1997)
[36] Siu, C.C.; Bert, C.W., Free vibrational analysis of sandwich conical shells with free edges, J. acoust. soc. amer., 47, 943-945, (1970)
[37] Sivadas, K.R.; Ganesan, N., Vibration analysis of thick composite clamped conical shells with variable thickness, J. sound vibration, 152, 27-37, (1992) · Zbl 0920.73179
[38] W. Soedel, Vibrations of Shells and Plates, second ed., Revised and Expanded, Marcel Dekker Inc., New York, 1996.
[39] Tong, L., Free vibration of orthotropic conical shells, Internat. J. eng. sci., 31, 5, 719-733, (1993) · Zbl 0775.73154
[40] Tong, L., Free vibration of composite laminated conical shells, Internat. J. mech. sci., 35, 1, 47-61, (1993) · Zbl 0825.73343
[41] Tong, L., Free vibration of laminated conical shells including transverse shear deformation, Internat. J. solids structure, 31, 443-456, (1994) · Zbl 0790.73047
[42] Wan, D.C.; Zhou, Y.C.; Wei, G.W., Numerical solution of unsteady incompressible flows by the discrete singular convolution, Internat. J. numer. methods fluid, 38, 789-810, (2002) · Zbl 1005.76072
[43] Wei, G.W., Discrete singular convolution for the solution of the fokker – planck equations, J. chem. phys., 110, 8930-8942, (1999)
[44] Wei, G.W., Discrete singular convolution for the sine-Gordon equation, Phys. D, 137, 247-259, (2000) · Zbl 0944.35087
[45] Wei, G.W., Wavelets generated by using discrete singular convolution kernels, J. phys. A, 33, 8577-8596, (2000) · Zbl 0961.42019
[46] Wei, G.W., Solving quantum eigenvalue problems by discrete singular convolution, J. phys. B, 33, 343-352, (2000)
[47] Wei, G.W., A new algorithm for solving some mechanical problems, Comput. methods appl. mech. eng., 190, 2017-2030, (2001) · Zbl 1013.74081
[48] Wei, G.W., Vibration analysis by discrete singular convolution, J. sound vibration, 244, 535-553, (2001) · Zbl 1237.74095
[49] Wei, G.W., Discrete singular convolution for beam analysis, Eng. structures, 23, 1045-1053, (2001)
[50] Wei, G.W.; Yun, G., Conjugate filter approach for solving burgers’ equation, J. comput. appl. math., 149, 439-456, (2002) · Zbl 1058.76054
[51] Wei, G.W.; Zhao, Y.B.; Xiang, Y., The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution, Internat. J. mech. sci., 43, 1731-1746, (2001) · Zbl 1018.74017
[52] Wei, G.W.; Zhao, Y.B.; Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports. part 1: theory and algorithm, Internat. J. numer. methods eng., 55, 913-946, (2002) · Zbl 1058.74643
[53] Wei, G.W.; Zhao, Y.B.; Xiang, Y., A novel approach for the analysis of high-frequency vibrations, J. sound vibration, 257, 2, 207-246, (2002)
[54] Wu, C.-P.; C-H, .Wu, Asymptotic differential quadrature solutions for the free vibration of laminated conical shells, Computat. mech., 25, 346-357, (2000) · Zbl 0967.74028
[55] Yang, C.C., On vibrations of orthotropic conical shells, J. sound vibration, 34, 552-555, (1974)
[56] Yunshan, H.; Wei, G.W.; Xiang, Y., DSC-Ritz method for the free vibration analysis of Mindlin plates, Internat. J. numer. methods eng., 62, 262-288, (2005) · Zbl 1179.74175
[57] Zhao, S.; Wei, G.W.; Xiang, Y., DSC analysis of free-edged beams by an iteratively matched boundary method, J. sound vibration, 284, 487-493, (2005) · Zbl 1237.74198
[58] Zhao, Y.B.; Wei, G.W., DSC analysis of rectangular plates with non-uniform boundary conditions, J. sound vibration, 255, 2, 203-228, (2002)
[59] Zhao, Y.B.; Wei, G.W.; Xiang, Y., Discrete singular convolution for the prediction of high frequency vibration of plates, Internat. J. solids and structures, 39, 65-88, (2002) · Zbl 1090.74604
[60] Zhao, Y.B.; Wei, G.W.; Xiang, Y., Plate vibration under irregular internal supports, Internat. J. solids and structures, 39, 1361-1383, (2006) · Zbl 1090.74603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.