×

zbMATH — the first resource for mathematics

New and old regimes for the endoreversible heat engine. (English) Zbl 1114.80001
Finite time thermodynamics introduces the use of optimal control theory to take account of time in the analysis of thermodynamic processes and emphasized maximum power as an interesting bound. In the endoreversible heat engine, the working fluid undergoes only reversible transformations. The present paper concerns the simple model Curzon and Ahlborn and explores the symmetries in the equations of the model. The physical bound for the power inspires the consideration of analogous bounds that consider work per unit of the heat transfer coefficient. This is interesting because heat transfer coefficients represent heat exchange equipment, which is as much a resource to the heat engine as time input heat. The authors review previous results and present new results for the cyclic operation of the endoreversible heat engine. The physical meaning of the coefficients and the relevance of regimes are discussed too.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1119/1.10023 · doi:10.1119/1.10023
[2] DOI: 10.1119/1.17730 · doi:10.1119/1.17730
[3] DOI: 10.1119/1.18306 · doi:10.1119/1.18306
[4] DOI: 10.1103/PhysRevA.15.2086 · doi:10.1103/PhysRevA.15.2086
[5] DOI: 10.1103/PhysRevA.15.2094 · doi:10.1103/PhysRevA.15.2094
[6] DOI: 10.1063/1.434122 · doi:10.1063/1.434122
[7] DOI: 10.1103/PhysRevA.19.1272 · doi:10.1103/PhysRevA.19.1272
[8] DOI: 10.1515/jnet.1997.22.4.311 · Zbl 0920.73022 · doi:10.1515/jnet.1997.22.4.311
[9] DOI: 10.1515/JNETDY.1999.020 · Zbl 1222.80003 · doi:10.1515/JNETDY.1999.020
[10] DOI: 10.1016/j.pecs.2003.10.003 · doi:10.1016/j.pecs.2003.10.003
[11] DOI: 10.1016/S0360-5442(00)00059-1 · doi:10.1016/S0360-5442(00)00059-1
[12] Wu, Int. J. Mech. Eng. Educ. 21 pp 337– (1993)
[13] DOI: 10.1016/S0196-8904(96)00214-2 · doi:10.1016/S0196-8904(96)00214-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.