zbMATH — the first resource for mathematics

Risk analysis of a pay to delay capacity reservation contract. (English) Zbl 1113.90015
Summary: This paper addresses a topic of supply chain management from a new perspective: incorporating risk aversion in a supply contract model. A pay to delay capacity reservation contract is analyzed by using the concept of conditional value-at-risk (Cvar). First, we construct the manufacturer’s optimal ordering problem by using the dynamic programming approach. Then, we derive the manufacturer’s optimal ordering strategy and compare our results with those obtained by using expectation performance and mean-variance tradeoff. Finally, numerical results are shown to reveal the impact of risk aversion on the manufacturer’s optimal decisions. The analysis presented in this paper reveals advantages of using the Cvar approach over the mean-variance approach.

90B05 Inventory, storage, reservoirs
91B30 Risk theory, insurance (MSC2010)
Full Text: DOI
[1] Lau H., Journal of Operational Research Society 31 pp 525– (1980)
[2] DOI: 10.1287/opre.40.3.603 · Zbl 0764.90022 · doi:10.1287/opre.40.3.603
[3] DOI: 10.1287/mnsc.41.5.786 · Zbl 0843.90036 · doi:10.1287/mnsc.41.5.786
[4] DOI: 10.1016/S0377-2217(98)00123-4 · Zbl 1009.90005 · doi:10.1016/S0377-2217(98)00123-4
[5] DOI: 10.1287/msom.2.4.410.12339 · doi:10.1287/msom.2.4.410.12339
[6] Agrawal V., IIE Transactions 32 pp 819– (2000)
[7] Chen, F. and Federgruen, A. 2000. ”Mean-variance analysis of basic inventory models”. U.S.A: Columbia University. Working paper
[8] Buzacott, J., Yan, H. and Zhang, H. 2004. ”Risk analysis of commitment-option contracts with forecast updates”. Canada: York University. Working paper
[9] Chen, X., Sim, M., Simchi-Levi, D. and Sun, P. 2003. ”Risk averse in inventory management”. U.S.A: the Center of eBusiness in MIT. Working paper
[10] Zhu, S. and Fukushima, M. 2005. ”Worst-case conditional value-at-risk with application to robust portfolio management”. Japan: Kyoto University. Working paper · Zbl 1233.91254
[11] Markowitz H., Portfolio Selection, Efficient Diversification of Investments (1959)
[12] Wang S., Portfolio Selection and Asset Pricing (2002) · Zbl 0987.91033 · doi:10.1007/978-3-642-55934-1
[13] Rockafellar R., Journal of Risk 2 pp 21– (2000)
[14] DOI: 10.1016/S0378-4266(02)00271-6 · doi:10.1016/S0378-4266(02)00271-6
[15] DOI: 10.1137/S1052623400375075 · Zbl 1022.91017 · doi:10.1137/S1052623400375075
[16] Pflug G., Some Remarks on the Value-at-risk and Conditional Value-at-risk, Probabilistic Constrained Optimization: Methodology and Application (2000) · Zbl 0994.91031
[17] DOI: 10.1016/S0165-1889(03)00109-X · Zbl 1200.91133 · doi:10.1016/S0165-1889(03)00109-X
[18] Brown, A. and Lee, H. 1997. ”Optimal pay-to-delay capacity reservation with application to the semi-conductor industry”. U.S.A: Department of Industrial Engineering and Engineering Management, Stanford University. Working paper
[19] Heyman D., Stochastic Model in Operations Research (1984) · Zbl 0531.90062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.