zbMATH — the first resource for mathematics

Next-to-leading order corrections to \(Wt\) production and decay. (English) Zbl 1113.81317
Summary: We present the results of a next-to-leading order calculation of \(Wt\) production, including the decays of both the top quark and the \(W\) boson. The effects of radiation in the decay of the top quark are also included. The separation of diagrams which appear in the real corrections, into singly- and doubly-resonant contributions, is performed using a \(\beta\)-jet veto which is motivated by the use of the bottom quark distribution function. We find that, for a choice of scale which is suitable for this approach, the QCD corrections are very mild and only change the cross section by up to 10% at the LHC, depending on the severity of the \(b\)-jet veto. When further cuts are applied, applicable for a Higgs boson search in the \(H\rightarrow WW^*\) channel, we find that the radiative effects greatly decrease the number of background events expected from this process. In addition, the shapes of relevant distributions can be significantly changed at next-to-leading order. (preprint number hep-ph/0506289 ).

81V05 Strong interaction, including quantum chromodynamics
81V15 Weak interaction in quantum theory
81T13 Yang-Mills and other gauge theories in quantum field theory
Full Text: DOI
[1] G. Altarelli, M.L. Mangano (Eds.), Standard Model Physics (and more) at the LHC, Geneva, Switzerland, 14-15 October 1999
[2] Campbell, J.M.; Ellis, R.K., Phys. rev. D, 60, 113006, (1999)
[3] Campbell, J.M.; Ellis, R.K., Phys. rev. D, 62, 114012, (2000)
[4] Campbell, J.M.; Ellis, R.K., Phys. rev. D, 65, 113007, (2002)
[5] Belyaev, A.S.; Boos, E.E.; Dudko, L.V., Phys. rev. D, 59, 075001, (1999)
[6] Tait, T.M.P., Phys. rev. D, 61, 034001, (2000)
[7] Belyaev, A.; Boos, E., Phys. rev. D, 63, 034012, (2001)
[8] Giele, W.T.; Keller, S.; Laenen, E., Phys. lett. B, 372, 141, (1996)
[9] Zhu, S.; Zhu, S., Phys. lett. B, Phys. lett. B, 537, 351, (2002), Erratum
[10] Campbell, J.M.; Ellis, R.K.; Tramontano, F., Phys. rev. D, 70, 094012, (2004)
[11] Ellis, R.K.; Ross, D.A.; Terrano, A.E., Nucl. phys. B, 178, 421, (1981)
[12] Catani, S.; Seymour, M.H., Phys. lett. B, 378, 287, (1996)
[13] Catani, S.; Seymour, M.H.; Catani, S.; Seymour, M.H., Nucl. phys. B, Nucl. phys. B, 510, 291, (1997), Erratum
[14] Catani, S.; Dittmaier, S.; Seymour, M.H.; Trocsanyi, Z., Nucl. phys. B, 627, 189, (2002)
[15] Gottschalk, T., Phys. rev. D, 23, 56, (1981)
[16] Schmidt, C.R., Phys. rev. D, 54, 3250, (1996)
[17] Pittau, R., Comput. phys. commun., 111, 48, (1998)
[18] Campbell, J.M.; Glover, E.W.N.; Miller, D.J., Nucl. phys. B, 498, 397, (1997)
[19] Boos, E.; Plehn, T., Phys. rev. D, 69, 094005, (2004)
[20] Nason, P.; Dawson, S.; Ellis, R.K., Nucl. phys. B, 303, 607, (1988)
[21] Kauer, N.; Zeppenfeld, D., Phys. rev. D, 65, 014021, (2002)
[22] Lai, H.L., Eur. phys. J. C, 12, 375, (2000)
[23] Maltoni, F.; Stelzer, T., Jhep, 0302, 027, (2003)
[24] Azzi, P.
[25] Pumplin, J.; Stump, D.R.; Huston, J.; Lai, H.L.; Nadolsky, P.; Tung, W.K., Jhep, 0207, 012, (2002)
[26] Martin, A.D.; Roberts, R.G.; Stirling, W.J.; Thorne, R.S., Eur. phys. J. C, 28, 455, (2003)
[27] Dittmar, M.; Dreiner, H.K., Phys. rev. D, 55, 167, (1997)
[28] Binoth, T.; Ciccolini, M.; Kauer, N.; Kramer, M.
[29] Duhrssen, M.; Jakobs, K.; Marquard, P.; van der Bij, J.J.
[30] ATLAS Collaboration, ATLAS Detector and Physics Performance TDR, CERN/LHCC/99-14
[31] Davatz, G.; Dissertori, G.; Dittmar, M.; Grazzini, M.; Pauss, F., Jhep, 0405, 009, (2004)
[32] Sjostrand, T.; Eden, P.; Friberg, C.; Lonnblad, L.; Miu, G.; Mrenna, S.; Norrbin, E., Comput. phys. commun., 135, 238, (2001)
[33] Nelson, C.A., Phys. rev. D, 37, 1220, (1988)
[34] Nagy, Z.; Trocsanyi, Z.; Nagy, Z.; Trocsanyi, Z., Phys. rev. D, Phys. rev. D, 62, 099902, (2000), Erratum
[35] Nagy, Z., Phys. rev. D, 68, 094002, (2003)
[36] ’t Hooft, G.; Veltman, M.J.G., Nucl. phys. B, 153, 365, (1979)
[37] Beenakker, W.; Dittmaier, S.; Kramer, M.; Plumper, B.; Spira, M.; Zerwas, P.M., Nucl. phys. B, 653, 151, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.