×

zbMATH — the first resource for mathematics

Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved spacetime. (English) Zbl 1113.81104
The authors present several structural properties for a free Dirac quantum field on a globally hyperbolic spacetime. They prove that any two quasifree Hadamard states on the algebra of free Dirac fields are locally quasiequivalent and, on a globally hyperbolic spacetime, the associated local von Neumann algebras are factors of type III\(_1\) which are locally unitarily equivalent. They verify that the theory of a free Dirac field on a static spacetime satisfies the nuclearity condition in the sense of Buchholz and Wichmann. Using this result they prove that on a globally hyperbolic spacetime, the split-property holds in the representation of any quasifree Hadamard state.

MSC:
81T20 Quantum field theory on curved space or space-time backgrounds
81T05 Axiomatic quantum field theory; operator algebras
81R15 Operator algebra methods applied to problems in quantum theory
46N50 Applications of functional analysis in quantum physics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Araki, H.: On quasifree states of the CAR and Bogoliubov automorphisms. Publ. RIMS Kyoto Univ. 6, 385–442 (1970) · Zbl 0227.46061
[2] Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111, 123 (1987) · Zbl 0645.46048
[3] Buchholz, D., D’Antoni, C., Longo, R.: Nuclear Maps and Modular Structures II: Applications to Quantum Field Theory. Commun. Math. Phys 129, 115–138 (1990) · Zbl 0773.47007
[4] Buchholz, D., Wichmann, E.H.: Causal independence and the energy-level density of states in quantum field theory. Commun. Math. Phys. 106, 321–344 (1986) · Zbl 0626.46064
[5] Buchholz, D., Porrmann, M.: How small is the phase space in quantum field theory? Ann. Inst. H. Poincare 52, 237 (1991) · Zbl 0719.46044
[6] Dimock, J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269, 133–147 (1982) · Zbl 0518.58018
[7] Foit, J.J.: Abstract Twisted Duality for Quantum Free Fermi Field. Publ. R.I.M.S. Kyoto Univ. 19, 729–741 (1983) · Zbl 0534.46049
[8] Fulling, S.A., Narcowich, F.J. Wald, R.M.: Singularity Structure Of The Two Point Function In Quantum Field Theory In Curved Space-Time. II. Annals Phys. 136, 243 (1981) · Zbl 0495.35054
[9] Gilkey, P.B.: The Index Theorem and the Heat Equation. Publish or Perish, Boston 1974 · Zbl 0287.58006
[10] Haag, R.: Local Quantum Physics. Berlin: Springer Verlag, 1990 · Zbl 0957.81501
[11] Haag, R., Swieca, J.A.: When does a quantum field theory describe particles? Commun. Math. Phys. 5, 215 (1967) · Zbl 0149.23803
[12] Hörmander, L.: The analysis of linear partial differential operators, III. Berlin: Springer-Verlag, 1985 · Zbl 0601.35001
[13] Hollands, S.: The Hadamard Condition for Dirac fields and Adiabatic States on Robertson-Walker Spacetimes. Commun. Math. Phys. 216, 635 (2001) · Zbl 0976.58023
[14] Hollands, S., Ruan, W.: The state space of perturbative quantum field theory in curved space-times. Ann. Henri Poincaré 3, 635 (2002) · Zbl 1158.81348
[15] Junker, W.: Hadamard States, Adiabatic Vacua and the Construction of Physical States for Scalar Quantum Fields on Curved Spacetime. Rev. Math. Phys. 8, 1091–1159 (1996) · Zbl 0869.53053
[16] Junker, W., Schroe, E.: Adiabatic vacuum states on general spacetime manifolds: Definition, construction and physical properties. Ann. Poincaré Phys. Theor. 3, 1113 (2002)
[17] Kay, B.S., Wald, R.M.: Theorems On The Uniqueness And Thermal Properties Of Stationary, Nonsingular, Quasifree States On Space-Times With A Bifurcate Killing Horizon. Phys. Rept. 207, 49 (1991) · Zbl 0861.53074
[18] Kratzert, K.: Singularity structure of the two point function of the free Dirac field on a globally hyperbolic spacetime. Ann. Phys. 9, 475 (2000) · Zbl 0958.81050
[19] Pietsch, A.: Nuclear locally convex spaces. Berlin: Springer-Verlag, 1972 · Zbl 0308.47024
[20] Powers, R.T., Størmer, E.: Free states of the canonical anticommutation relations. Commun. Math. Phys. 16, 1 (1970) · Zbl 0186.28301
[21] Radzikowski, M.J.: Micro-Local Approach To The Hadamard Condition In Quantum Field Theory On Curved Space-Time. Commun. Math. Phys. 179, 529 (1996) · Zbl 0858.53055
[22] Reed, M., Simon, B.: Methods of modern mathematical physics, IV. London: Academic Press, 1978 · Zbl 0401.47001
[23] Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13, 1203 (2001) · Zbl 1029.81053
[24] Sahlmann, H., Verch, R.: Passivity and microlocal spectrum condition. Commun. Math. Phys. 214, 705 (2000) · Zbl 1010.81046
[25] Strohmaier, A.: The Reeh-Schlieder property for quantum fields on stationary spacetimes. Commun. Math. Phys. 215, 105–118 (2000) · Zbl 0983.81038
[26] Summers, S.: Normal product states for fermions and twisted duality for CCR and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys. 86, 111–141 (1982) · Zbl 0505.46051
[27] Verch, R.: Nuclearity, split-property and duality for the Klein-Gordon field in curved space-time. Lett. Math. Phys. 29, 297 (1993) · Zbl 0799.46082
[28] Verch, R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507 (1994) · Zbl 0790.53077
[29] Verch, R.: A Spin-Statistics Theorem for Quantum Fields on Curved Spacetime Manifolds in a Generally Covariant Framework. Commun. Math. Phys. 223, 261 (2001) · Zbl 1086.81067
[30] Verch, R.: Scaling Analysis and Ultraviolet Behavior of Quantum Field Theories in Curved Spacetime. Hamburg University (1994) (PhD thesis) · Zbl 0790.53077
[31] Hollands, S., Wald, R.M.: Local Wick Polynomials and Local Time Ordered Products of Quantum Fields in Curved Spacetime. Commun. Math. Phys. 223, 289 (2001) · Zbl 0989.81081
[32] Wald, R.M.: General Relativity. Chicago: The University of Chicago Press, 1984 · Zbl 0549.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.