zbMATH — the first resource for mathematics

Cantor and band spectra for periodic quantum graphs with magnetic fields. (English) Zbl 1113.81053
Summary: We provide an exhaustive spectral analysis of the two-dimensional periodic square graph lattice with a magnetic field. We show that the spectrum consists of the Dirichlet eigenvalues of the edges and of the preimage of the spectrum of a certain discrete operator under the discriminant (Lyapunov function) of a suitable Kronig-Penney Hamiltonian. In particular, between any two Dirichlet eigenvalues the spectrum is a Cantor set for an irrational flux, and is absolutely continuous and has a band structure for a rational flux. The Dirichlet eigenvalues can be isolated or embedded, subject to the choice of parameters. Conditions for both possibilities are given. We show that generically there are infinitely many gaps in the spectrum, and the Bethe-Sommerfeld conjecture fails in this case.

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
47B39 Linear difference operators
47N50 Applications of operator theory in the physical sciences
81V10 Electromagnetic interaction; quantum electrodynamics
82D20 Statistical mechanical studies of solids
Full Text: DOI arXiv
[1] Abilio C.C., Butaud P., Fournier Th., Pannetier B., Vidal J., Tedesco S., Dalzotto B. (1999) Magnetic field induced localization in a two-dimensional superconducting wire network. Phys. Rev. Lett. 83, 5102–5105 · doi:10.1103/PhysRevLett.83.5102
[2] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable models in quantum mechanics. 2 nd ed. Providence, R: AMS Chelsea Publ., 2005 · Zbl 1078.81003
[3] Alexander S. (1983) Superconductivity of networks. A percolation approach to the effects of disorder. Phys. Rev. B 27, 1541–1557 · doi:10.1103/PhysRevB.27.1541
[4] Avila A., Jitomirskaya S. The ten martini problem. Ann. Math. (to appear) http://arXiv. org:math.DS/0503363, 2005 · Zbl 1166.47031
[5] Avila A., Krikorian R. Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. To appear in Ann. of Math., http:// arXiv.org:math.DS/0306382, 2003 · Zbl 1138.47033
[6] Avron J.E., Seiler R., Simon B. (1983) Homotopy and quantization in condensed matter physics. Phys. Rev. Lett. 51, 51–54 · doi:10.1103/PhysRevLett.51.51
[7] Birman M.Sh., Suslina T.A. (2000) A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity. St. Petersburg Math. J. 11, 203–232
[8] Boca F.P., Zaharescu A. (2005) Norm estimates of almost Mathieu operators. J. Funct. Anal. 220, 76–96 · Zbl 1061.47027 · doi:10.1016/j.jfa.2004.09.013
[9] Boon M.H. (1972) Representations of the invariance group for a Bloch electron in a magnetic field. J. Math. Phys. 13, 1268–1285 · doi:10.1063/1.1666132
[10] Coddington E.A., Levinson N., (1995) Theory of ordinary differential equations. New York etc, McGraw-Hill · Zbl 0064.33002
[11] de Gennes P.-G. (1981) Diamagnétisme de grains supraconduteurs près d’un seuil de percolation. C.R. Acad. Sci. Paris, Sér. II 292, 9–12
[12] Derkach V.A., Malamud M.M. (1991) Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95, 1–95 · Zbl 0748.47004 · doi:10.1016/0022-1236(91)90024-Y
[13] Exner P. (1995) Lattice Kronig-Penney models. Phys. Rev. Lett. 74, 3503–3506 · doi:10.1103/PhysRevLett.74.3503
[14] Exner P.(1997) A duality between Schrödinger operators on graphs and certain Jacobi matrices. Ann. Inst. H. Poincaré 66, 359–371 · Zbl 0949.34073
[15] Gehtman M.M., Stankevich I.V. (1977) The generalized Kronig-Penney problem. Funct. Anal. Appl. 11, 51–52 · Zbl 0372.34015 · doi:10.1007/BF01135534
[16] Geyler V.A., Margulis V.A. (1987) Anderson localization in the nondiscrete Maryland model. Theor. Math. Phys. 70, 133–140 · doi:10.1007/BF01039202
[17] Geyler V.A., Senatorov M.M. (1997) The structure of the spectrum of the Schrödinger operator with a magnetic field in a strip and infinite-gap potentials. Sb. Math. 88(5): 657–669 · Zbl 0901.34077 · doi:10.1070/SM1997v188n05ABEH000224
[18] Gorbachuk V.I., Gorbachuk. M.A. (1991) Boundary value problems for operator differential equations. Dordrecht etc, Kluwer Acad. Publ · Zbl 0751.47025
[19] Helffer B., Kerdelhué P., Sjöstrand J. (1990) Le papillon de Hofstadter revisité. Mém. Soc. Math. Fr., Nouv. Sér. 43: 1–87
[20] Helffer B., Sjöstrand J. (1989) Semi-classical analysis for Harper’s equation III: Cantor structure of the spectrum. Mém. Soc. Math. Fr., Nouv. Sér. 39, 1–124 · Zbl 0725.34099
[21] Hofstadter D.R. (1976) Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 · doi:10.1103/PhysRevB.14.2239
[22] Hryniv R.O., Mykytyuk Ya.V. (2001) 1-D Schrödinger operators with periodic singular potentials. Methods Funct. Anal. Topology 7(4): 31–42 · Zbl 0992.47021
[23] Kohmoto M. (1993) Quantum-wire networks and the quantum Hall effect. J. Phys. Soc. Japan 62, 4001–4008 · doi:10.1143/JPSJ.62.4001
[24] Kostrykin V., Schrader R. (2003) Quantum wires with magnetic fluxes. Commun. Math. Phys. 237, 161–179 · Zbl 1037.81044
[25] Kreft Ch., Seiler R. (1996) Models of the Hofstadter type. J. Math. Phys. 37, 5207–5243 · Zbl 0867.58051 · doi:10.1063/1.531681
[26] Kuchment P., Quantum graphs I. (2004) Some basic structures. Waves Random Media 14, S107–S128 · Zbl 1063.81058 · doi:10.1088/0959-7174/14/1/014
[27] Kuchment P. (2005) Quantum graphs II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A: Math. Gen. 38, 4887–4900 · Zbl 1070.81062 · doi:10.1088/0305-4470/38/22/013
[28] Langbein D. (1969) The tight-binding and the nearly-free-electron approach to lattice electron in external magnetic field. Phys. Rev. (2)180: 633–648 · doi:10.1103/PhysRev.180.633
[29] Levitan B.M., Sargsyan I.S. (1990) Sturm-Liouville and Dirac operators. Dordrecht etc, Kluwer · Zbl 0704.34002
[30] Mikhailets V.A., Sobolev A.V. (1999) Common eigenvalue problem and periodic Schrödinger operators. J. Funct. Anal. 165, 150–172 · Zbl 0933.47032 · doi:10.1006/jfan.1999.3406
[31] Naud C., Faini G., Mailly D. (2001) Aharonov–Bohm cages in 2D normal metal networks. Phys. Rev. Lett. 86, 5104–5107 · doi:10.1103/PhysRevLett.86.5104
[32] Naud C., Faini G., Mailly D., Vidal J., Douçot B., Montambaux G., Wieck A., Reuter D. (2002) Aharonov– Bohm cages in the GaAlAs/GaAs system. Physica E 12, 190–196 · doi:10.1016/S1386-9477(01)00307-1
[33] Novikov S.P. (1985) Two-dimensional Schrödinger operators in periodic fields. J. Soviet Math. 28(1), 1–20 · Zbl 0564.35083 · doi:10.1007/BF02104894
[34] Pavlov B.S. (1987) The theory of extensions and explicitly solvable models. Russ. Math. Surv. 42, 127–168 · Zbl 0665.47004 · doi:10.1070/RM1987v042n06ABEH001491
[35] Prange R.E., Girvin S.M.(eds). (1990) The Quantum Hall Effect. New York, Springer-Verlag
[36] Puig J. (2004) Cantor spectrum for the almost Mathieu operator. Commun. Math. Phys. 244, 297–309 · Zbl 1075.39021 · doi:10.1007/s00220-003-0977-3
[37] Schenker J.H., Aizenman M. (2000) The creation of spectral gaps by graph decoration. Lett. Math. Phys. 53, 253–262 · Zbl 0990.47006 · doi:10.1023/A:1011032212489
[38] Shubin M.A. (1994) Discrete magnetic Laplacian. Commun. Math. Phys. 164, 259–275 · Zbl 0811.46079 · doi:10.1007/BF02101702
[39] Sobolev A.V. (1999) Absolute continity of the periodic magnetic Schrödinger operator. Invent. Math. 137, 85–112 · Zbl 0932.35049 · doi:10.1007/s002220050324
[40] Thouless D.J., Kohmoto M., Nightingale M.P., den Nijs M. (1982) Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 · doi:10.1103/PhysRevLett.49.405
[41] Zak J. (1964) Magnetic translation group. Phys. Rev. 134, A1602–A1606 · Zbl 0131.45404 · doi:10.1103/PhysRev.134.A1602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.