×

zbMATH — the first resource for mathematics

Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains. (English) Zbl 1113.60062
This paper is devoted to study the behaviour of stochastic partial differential equations in unbounded domains. The authors begin by considering random dynamical systems (RDS) on a separable Banach space. They introduce the new concept of asymptotically compact (AC) RDS. They prove that for an ACRDS, the \(\Omega\)-limit set of any bounded subset \(B\) is nonempty, compact, invariant and attracts \(B\). The invariance of this set will imply the existence of invariant measure, while the uniqueness is not considered. Using the classical Galerkin approximation method and some compactness theorem they prove the existence of the stochastic flow associated with 2D stochastic Navier-Stokes equations in Poincaré domains (possibly unbounded). Then, they construct the RDS corresponding to the Navier-Stokes equations. Using energy inequalities they are able to prove the continuity of this RDS in a weak topology and that this RDS is AC. Finally, they obtain the existence of an invariant measure for the 2D stochastic Navier-Stokes equations perturbed by an additive noise. Since the method used by the authors does not depend on the compactness of the Sobolev embeddings, they can deal with unbounded domains and they can relax assumptions on the noise. So, they obtain new results in bounded and in unbounded domains.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
37H10 Generation, random and stochastic difference and differential equations
34F05 Ordinary differential equations and systems with randomness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frédéric Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations 83 (1990), no. 1, 85 – 108. · Zbl 0706.35058 · doi:10.1016/0022-0396(90)90070-6 · doi.org
[2] Ludwig Arnold, Random dynamical systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. · Zbl 0906.34001
[3] Peter Baxendale, Gaussian measures on function spaces, Amer. J. Math. 98 (1976), no. 4, 891 – 952. · Zbl 0384.28011 · doi:10.2307/2374035 · doi.org
[4] Zdzisław Brzeźniak, On analytic dependence of solutions of Navier-Stokes equations with respect to exterior force and initial velocity, Univ. Iagel. Acta Math. 28 (1991), 111 – 124. · Zbl 0751.35035
[5] Zdzisław Brzeźniak, On Sobolev and Besov spaces regularity of Brownian paths, Stochastics Stochastics Rep. 56 (1996), no. 1-2, 1 – 15. · Zbl 0890.60077
[6] Zdzisław Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep. 61 (1997), no. 3-4, 245 – 295. · Zbl 0891.60056 · doi:10.1080/17442509708834122 · doi.org
[7] Zdzisław Brzeźniak, Some remarks on Itô and Stratonovich integration in 2-smooth Banach spaces, Probabilistic methods in fluids, World Sci. Publ., River Edge, NJ, 2003, pp. 48 – 69. · Zbl 1064.60116 · doi:10.1142/9789812703989_0004 · doi.org
[8] Zdzisław Brzeźniak, Marek Capiński, and Franco Flandoli, Pathwise global attractors for stationary random dynamical systems, Probab. Theory Related Fields 95 (1993), no. 1, 87 – 102. · Zbl 0791.58056 · doi:10.1007/BF01197339 · doi.org
[9] Z. Brzezniak and Y. Li, Asymptotic behaviour of solutions to the 2D stochastic Navier-Stokes equations in unbounded domains - new developments, Proceedings of the First Sino-German Conference in Stochastic Analysis, 28 August-3 September, 2002, Beijing, in press.
[10] Zdzisław Brzeźniak and Szymon Peszat, Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces, Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999) CMS Conf. Proc., vol. 28, Amer. Math. Soc., Providence, RI, 2000, pp. 55 – 64. · Zbl 0978.60071
[11] Zdzisław Brzeźniak and Szymon Peszat, Stochastic two dimensional Euler equations, Ann. Probab. 29 (2001), no. 4, 1796 – 1832. · Zbl 1032.60055 · doi:10.1214/aop/1015345773 · doi.org
[12] Zdzisław Brzeźniak and Jan van Neerven, Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise, J. Math. Kyoto Univ. 43 (2003), no. 2, 261 – 303. · Zbl 1056.60057
[13] Henri Cartan, Differential calculus, Hermann, Paris; Houghton Mifflin Co., Boston, Mass., 1971. Exercises by C. Buttin, F. Rideau and J. L. Verley; Translated from the French. · Zbl 0223.35004
[14] Lamberto Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31 (1961), 308 – 340 (Italian). · Zbl 0116.18002
[15] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. · Zbl 0346.46038
[16] Hans Crauel, Random probability measures on Polish spaces, Stochastics Monographs, vol. 11, Taylor & Francis, London, 2002. · Zbl 1031.60041
[17] Hans Crauel, Arnaud Debussche, and Franco Flandoli, Random attractors, J. Dynam. Differential Equations 9 (1997), no. 2, 307 – 341. · Zbl 0884.58064 · doi:10.1007/BF02219225 · doi.org
[18] Hans Crauel and Franco Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields 100 (1994), no. 3, 365 – 393. · Zbl 0819.58023 · doi:10.1007/BF01193705 · doi.org
[19] Giuseppe Da Prato and Arnaud Debussche, Two-dimensional Navier-Stokes equations driven by a space-time white noise, J. Funct. Anal. 196 (2002), no. 1, 180 – 210. · Zbl 1013.60051 · doi:10.1006/jfan.2002.3919 · doi.org
[20] Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. · Zbl 0761.60052
[21] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems, London Mathematical Society Lecture Note Series, vol. 229, Cambridge University Press, Cambridge, 1996. · Zbl 0849.60052
[22] J.-P. Eckmann and M. Hairer, Invariant measures for stochastic partial differential equations in unbounded domains, Nonlinearity 14 (2001), no. 1, 133 – 151. · Zbl 0970.60071 · doi:10.1088/0951-7715/14/1/308 · doi.org
[23] Franco Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 4, 403 – 423. · Zbl 0820.35108 · doi:10.1007/BF01194988 · doi.org
[24] Franco Flandoli and Vincenzo M. Tortorelli, Time discretization of Ornstein-Uhlenbeck equations and stochastic Navier-Stokes equations with a generalized noise, Stochastics Stochastics Rep. 55 (1995), no. 1-2, 141 – 165. · Zbl 0886.60057
[25] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. · Zbl 0224.35002
[26] Daisuke Fujiwara and Hiroko Morimoto, An \?\?-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 3, 685 – 700. · Zbl 0386.35038
[27] Jean-Michel Ghidaglia, A note on the strong convergence towards attractors of damped forced KdV equations, J. Differential Equations 110 (1994), no. 2, 356 – 359. · Zbl 0805.35114 · doi:10.1006/jdeq.1994.1071 · doi.org
[28] Leonard Gross, Measurable functions on Hilbert space, Trans. Amer. Math. Soc. 105 (1962), 372 – 390. · Zbl 0178.50001
[29] Martin Hairer, Ergodicity of stochastic differential equations driven by fractional Brownian motion, Ann. Probab. 33 (2005), no. 2, 703 – 758. · Zbl 1071.60045 · doi:10.1214/009117904000000892 · doi.org
[30] John G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J. 29 (1980), no. 5, 639 – 681. · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048 · doi.org
[31] G. Stephen Jones, Stability and asymptotic fixed-point theory, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1262 – 1264. · Zbl 0131.13601
[32] H. Keller and B. Schmalfuss, Attractors For Stochastic Sine Gordon Equations Via Transformation into Random Equations, preprint, the University of Bremen, 1999.
[33] Olga Ladyzhenskaya, Attractors for semigroups and evolution equations, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1991. · Zbl 0755.47049
[34] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. · Zbl 0223.35039
[35] Jacques-Louis Lions and Giovanni Prodi, Un théorème d’existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris 248 (1959), 3519 – 3521 (French). · Zbl 0091.42105
[36] A.L. Neidhardt, Stochastic Integrals in 2-uniformly smooth Banach Spaces, University of Wisconsin, 1978.
[37] Ricardo Rosa, The global attractor for the 2D Navier-Stokes flow on some unbounded domains, Nonlinear Anal. 32 (1998), no. 1, 71 – 85. · Zbl 0901.35070 · doi:10.1016/S0362-546X(97)00453-7 · doi.org
[38] Jacques Rougemont, Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations, Comm. Math. Phys. 225 (2002), no. 2, 423 – 448. · Zbl 1015.60056 · doi:10.1007/s002200100586 · doi.org
[39] B. Schmalfuss, Backward cocycles and attractors of Stochastic Differential Equations”, pp. 185-192 in INTERNATIONAL SEMINAR ON APPLIED MATHEMATICS-NONLINEAR DYNAMICS: ATTRACTOR APPROXIMATION AND GLOBAL BEHAVIOUR, eds. Reitmann, T. Riedrich and N. Koksch, 1992.
[40] Roger Temam, Navier-Stokes equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and numerical analysis; With an appendix by F. Thomasset. · Zbl 0426.35003
[41] Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. · Zbl 0871.35001
[42] John A. Toth and Steve Zelditch, \?^\? norms of eigenfunctions in the completely integrable case, Ann. Henri Poincaré 4 (2003), no. 2, 343 – 368. · Zbl 1028.58028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.