zbMATH — the first resource for mathematics

Malliavin calculus for the stochastic 2D Navier-Stokes equation. (English) Zbl 1113.60058
The authors consider a two-dimensional incompressible fluid satisfying the stochastic Navier-Stokes equation \[ {\partial w\over\partial t}(t,x)+B(w,w)(t,x)=\nu\Delta w(t,x)+{\partial W\over\partial t}(t,x) \] on the two-dimensional torus. Here \(\nu\) is the viscosity constant, \(B(w,w)\) is some nonlinear functional, and \(W(t,x)=\sum W_k(t)e_k(x)\) is some force which can be written in terms of a finite number of standard one-dimensional Brownian motions \(W_k(t)\). It is proved that the law of any finite-dimensional projection of \(w(t,.)\) has a smooth strictly positive density with respect to the Lebesgue measure. Notice that the stochastic force is finite-dimensional, but is propagated to all the components by means of the nonlinearity of the equation. The main tool is Malliavin’s calculus, and the study of the Malliavin covariance matrix uses some technical results about stochastic partial differential equations. The results of this paper are an essential tool for studying the ergodicity of the equation.

60H07 Stochastic calculus of variations and the Malliavin calculus
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI arXiv
[1] Agrachev, J Math Fluid Mech 7 pp 108– (2005)
[2] ; ; On the support of Wiener functionals. Asymptotic problems in probability theory: Wiener functionals and asymptotics (Sanda/Kyoto, 1990), 3–34. Pitman Research Notes in Mathematics Series, 284. Longman, Harlow, 1993.
[3] Bardos, Arch Rational Mech Anal 50 pp 10– (1973)
[4] Ben Arous, Probab Theory Related Fields 90 pp 377– (1991)
[5] Bricmont, Comm Math Phys 224 pp 65– (2001)
[6] ; Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, 1988.
[7] ; Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series, 229. Cambridge University Press, Cambridge, 1996. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[8] ; Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 7. Masson, Paris, 1988.
[9] E, Comm Pure Appl Math 54 pp 1386– (2001)
[10] E, Comm Math Phys 224 pp 83– (2001)
[11] Eckmann, Comm Math Phys 219 pp 523– (2001)
[12] Flandoli, NoDEA Nonlinear Differential Equations Appl 1 pp 403– (1994)
[13] Foias, Rend Sem Mat Univ Padova 39 pp 1– (1967)
[14] Hairer, Ann of Math (2)
[15] Holley, J Funct Anal 42 pp 29– (1981)
[16] Kuksin, Comm Math Phys 213 pp 291– (2000)
[17] ; Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics, 27. Cambridge University Press, Cambridge, 2002. · Zbl 0983.76001
[18] The stochastically forced Navier-Stokes equations: energy estimates and phase space contraction. Doctoral dissertation, Princeton University, 1998.
[19] Mattingly, J Statist Phys 108 pp 1157– (2002)
[20] Mattingly, Comm Math Phys 230 pp 421– (2002)
[21] On recent progress for the stochastic Navier Stokes equations. Journées ”Équations aux Dérivées Partielles”, Exp. No. XI, 52 pp. Université de Nantes, Nantes, 2003. arXiv: math-PR/0409194, 2004. Also available at: http://www.math.sciences.univ-nantes.fr/edpa/2003/html/.
[22] Mattingly, Commun Contemp Math 1 pp 497– (1999)
[23] Mikulevicius, SIAM J Math Anal 35 pp 1250– (2004)
[24] Simplified Malliavin calculus. Séminaire de Probabilités, XX, 1984/85. 101–130. Lecture Notes in Mathematics, 1204. Springer, Berlin, 1986.
[25] The Malliavin calculus and related topics. Probability and Its Applications (New York). Springer, New York, 1995. · doi:10.1007/978-1-4757-2437-0
[26] Analysis on Wiener space and anticipating stochastic calculus. Lectures on probability theory and statistics (Saint-Flour, 1995). 123–227. Lecture Notes in Mathematics, 1690. Springer, Berlin, 1998.
[27] Nualart, Probab Theory Related Fields 78 pp 535– (1988)
[28] Ocone, J Funct Anal 79 pp 288– (1988)
[29] ; Continuous martingales and Brownian motion. 3rd ed. Grundlehren der Mathematischen Wissenschaften, 293. Springer, Berlin, 1999. · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[30] Romito, J Statist Phys 114 pp 155– (2004)
[31] Some applications of stochastic calculus to partial differential equations. Eleventh Saint Flour probability summer school—1981 (Saint Flour, 1981). 267–382. Lecture Notes in Mathematics, 976. Springer, Berlin, 1983.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.