×

zbMATH — the first resource for mathematics

A choice of forcing terms in inexact Newton method. (English) Zbl 1112.65044
The authors study the impact of forcing terms on the convergence behavior of inexact Newton methods. In particular, they show that an appropriate choice of the forcing terms leads to \(Q\)-superlinear convergence. The convergence analysis is not carried out in an affine invariant setting.

MSC:
65H10 Numerical computation of solutions to systems of equations
Software:
NITSOL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] An, H.-B., On convergence of the additive Schwarz preconditioned inexact Newton method, SIAM J. numer. anal., 43, 1850-1871, (2005) · Zbl 1111.65046
[2] Bellavia, S.; Morini, B., A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. sci. comput., 23, 940-960, (2001) · Zbl 0998.65053
[3] Brown, P.N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. sci. statist. comput., 11, 450-481, (1990) · Zbl 0708.65049
[4] Brown, P.N.; Saad, Y., Convergence theory of nonlinear newton – krylov algorithms, SIAM J. optim., 4, 297-330, (1994) · Zbl 0814.65048
[5] Cai, X.-C.; Gropp, W.D.; Keyes, D.E.; Tidriti, M.D., Newton – krylov – schwarz methods in CFD, (), 17-30 · Zbl 0876.76059
[6] Cai, X.-C.; Keyes, D.E., Nonlinearly preconditioned inexact Newton algorithms, SIAM J. sci. comput., 24, 183-200, (2002) · Zbl 1015.65058
[7] Dembo, R.S.; Eisenstat, S.C.; Steihaug, T., Inexact Newton methods, SIAM J. numer. anal., 19, 400-408, (1982) · Zbl 0478.65030
[8] Dembo, R.S.; Steihaug, T., Truncated Newton algorithms for large-scale optimization, Math. programming, 26, 190-212, (1983) · Zbl 0523.90078
[9] Dennis, J.E.; Schnabel, R.B., Numerical methods for unconstrained optimization and nonlinear equations, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0579.65058
[10] Eisenstat, S.C.; Walker, H.F., Globally convergent inexact Newton methods, SIAM J. optim., 4, 393-422, (1994) · Zbl 0814.65049
[11] Eisenstat, S.C.; Walker, H.F., Choosing the forcing term in an inexact Newton method, SIAM J. sci. comput., 17, 16-32, (1996) · Zbl 0845.65021
[12] Fokkema, D.R.; Sleijpen, G.L.G.; van der Vorst, H.A., Accelerated inexact Newton schemes for large systems of nonlinear equations, SIAM J. sci. comput., 19, 657-674, (1998) · Zbl 0916.65050
[13] Kaporin, I.E.; Axelsson, O., On a class of nonlinear equation solvers based on the residual norm reduction over a sequence of affine subspaces, SIAM J. sci. comput., 16, 228-249, (1995) · Zbl 0826.65048
[14] Knoll, D.A.; Keys, D.A., Jacobian-free newton – krylov method: a survey of approaches and applications, J. comput. phys., 193, 357-397, (2004) · Zbl 1036.65045
[15] Luksan, L., Inexact trust region method for large sparse systems of nonlinear equations, J. optim. theory appl., 81, 569-591, (1994) · Zbl 0803.65071
[16] Lužanin, Z.; Herceg, D.; Krejić, N., Parameter selection for inexact Newton method, Nonlinear anal. theory appl., 30, 17-24, (1997) · Zbl 0890.65046
[17] Ortega, J.M.; Rheinboldt, W.C., Iterative solution of nonlinear equations in several variables, (2000), SIAM Philadelphia, PA · Zbl 0949.65053
[18] Pernice, M.; Walker, H.F., NITSOL: a Newton iterative solver for nonlinear systems, SIAM J. sci. comput., 19, 302-318, (1998) · Zbl 0916.65049
[19] Rheinboldt, W.C., Methods for solving systems of nonlinear equations, (1998), SIAM Philadelphia, PA · Zbl 0906.65051
[20] Saad, Y., Iterative methods for sparse linear systems, (2003), SIAM Philadelphia, PA · Zbl 1002.65042
[21] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. comput., 7, 856-869, (1986) · Zbl 0599.65018
[22] Shadid, J.N.; Tuminaro, R.S.; Walker, H.F., An inexact Newton method for fully coupled solution of the navier – stokes equations with heat and mass transport, J. comput. phys., 137, 155-185, (1997) · Zbl 0898.76066
[23] Tuminaro, R.S.; Walker, H.F.; Shadid, J.N., On backbracking failure in Newton-GMRES methods with a demonstration for the navier – stokes equations, J. comput. phys., 180, 549-558, (2002) · Zbl 1143.76489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.