×

zbMATH — the first resource for mathematics

Lattice Boltzmann dynamic simulation of a mechanical heart valve device. (English) Zbl 1111.92014
Summary: A computational method for simulating blood flow through a heart mechanical valve in aortic position, based on lattice Boltzmann methods, is presented. Changes of fluid properties, affected by the valve opening and closing, were considered as well as time related changes of solid-liquid boundary conditions. The artificial devices opening and closing response is governed by the dynamic interaction of the mobile elements of the mechanic valve as the fluid passes through. Two-dimensional simulation results of two mechanical heart valve devices already existing in the market were conducted: St. Jude Medical’s (bileaflet) valve model and the Hall Kaster (HK) Medtronic Hall’s (one-leaflet) valve model. Shear stresses and pressure distributions as well as velocity profiles were quantified at different times of the heart cycle. Results obtained compared very well with the experimental values published in the technical literature.

MSC:
92C35 Physiological flow
65C20 Probabilistic models, generic numerical methods in probability and statistics
92-08 Computational methods for problems pertaining to biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] AVS Advanced Visual Systems. http://www.avs.com.
[2] Barbaro, V.; Grigioni, M.; Daniele, C.; D’Avenio, G.; Boccanera, G., 19mm sized bileaflet valve prostheses’ flow field investigated by bidimensional laser Doppler anemometry (part I: velocity profiles), Int. J. artif. organs, 20, 622-628, (1997)
[3] Black, M.M.; Cochrane, T.; Lawford, P.V.; Reul, H.; Yoganathan, A., Design and flow characteristics, (), 1-20
[4] Bluestein, D.; Li, Y.M.; Krukenkamp, I.B., Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques, J. biomech., 35, 1533-1540, (2002)
[5] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a lattice-Boltzmann fluid with boundaries, Phys. fluids, 13, 11, 3452-3459, (2001) · Zbl 1184.76068
[6] Boyd, J.; Buick, J.M.; Cosgrove, J.A.; Stansell, P., Application of the lattice Boltzmann method to arterial flow simulation: investigation of boundary conditions for complex arterial geometries, Aust. phys. eng. sci. med., 27, 4, 207-212, (2004)
[7] Chapman, S.; Cowling, T.G., The mathematical theory of non uniform gases, (1970), Cambridge Univ. Press Cambridge · Zbl 0098.39702
[8] Cheng, R.; Lai, Y.G.; Chandran, K.B., Three-dimensional fluid – structure interaction simulation of bileaflet mechanical heart valve flow dynamics, Ann. biomed. eng., 32, 11, 1471-1483, (2004)
[9] De Hart, J.; Peters, G.; Schreurs, P.; Baaijens, F., A three-dimensional computational analysis of fluid – structure interaction in the aortic valve, J. biomech., 36, 1, 103-112, (2003)
[10] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, R. soc. phil. trans. R. soc. lond. A, 360, 437-451, (2002) · Zbl 1001.76081
[11] Doyle, F., Static and dynamic analysis of structures (solid mechanics and its applications), ISBN: 0792312082, (1991), Kluwer Academic Publishers
[12] Edmunds, L.H.; Norwood, W.I.; Low, D.W., Atlas of cardiothoracic surgery, (1990), Lea&Febiger Philadelphia/London
[13] Fang, H.; Wang, Z.; Lin, Z.; Liu, M., Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. rev. E stat. nonlin. soft. matter. phys., 65, 5, 051925, (2002)
[14] Filippova, O.; Hänel, D., Grid refinement for lattice—BGK models, J. compd. phys., 147, 219, (1998) · Zbl 0917.76061
[15] Gerbeaua, J.F.; Vidrascub, M.; Freyc, P., Fluid – structure interaction in blood flows on geometries based on medical imaging, Comput. struct., 83, 2-3, 155-165, (2005)
[16] Grad, H., On the kinetic theory of rarefied gases, Commun. pure appl. math., 2, 331, (1949) · Zbl 0037.13104
[17] Grigioni, M.; Daniele, C.; D’Avenio, G.; Barbaro, V., The influence of the leaflets’ curvature on the flow field in two bileaflet prosthetic heart valves, J. biomech., 34, 613-621, (2001)
[18] He, X.; Luo, L.-S., Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. rev. E, 56, 6, 6811-6817, (1997)
[19] He, X.; Luo, L.-S., Lattice Boltzmann model for the incompressible navier – stokes equation, (1997), Plenum Publishing Corporation, pp. 927-945 · Zbl 0939.82042
[20] Hize, J.O., Turbulence, (1987), McGraw-Hill New York
[21] C.A. Hufnagel, W.P. Harvey, Surgical Correction of Aortic Insufficiency: Preliminary Report, Bull, Georgetown Univ. Med. Ctr., 6, 1953.
[22] ICMMES, International Conference for Mesoscopic Methods in Engineering and Science, provided by CAB—Institut für Computeranwendungen im Bauingenieurwesen, Pockelstr. 3, 38106 Braunschweig, Germany, 2005. http://www.icmmes.org.
[23] Junk, M., LBM—discrete dynamics and finite difference method, () · Zbl 1016.76061
[24] Knoch, M.; Reul, H.; Kroger, R.; Rau, G., Model studies at mechanical aortic heart valve prostheses. part 1: steady-state flow fields and pressure loss coefficients, J. biomech. eng., 110, 4, 334-343, (1988)
[25] Krafczyk, M.; Cerrolaza, M.; Schulz, M.; Rank, E., Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods, J. biomech., 31, 5, 453-462, (1998)
[26] Krafczyk, M.; Tölke, J.; Rank, E.; Schulz, M., Two-dimensional simulation of fluid – structure interaction using lattice-Boltzmann methods, Comput. struct., 79, 2031-2037, (2001)
[27] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. rev. E, 61, 6, 6546-6562, (2000)
[28] Lallemand, P.; Luo, L.-S., Lattice Boltzmann method for moving boundaries, J. compd. phys., 184, 406-421, (2003) · Zbl 1062.76555
[29] Li, H.; Lu, X.; Fang, H.; Qian, Y., Force evaluations in lattice Boltzmann simulations with moving boundaries in two dimensions, Phys. rev. E stat. nonlin. soft. matter. phys., 70, 2 Pt 2, 026701, (2004)
[30] Lim, W.L.; Chew, Y.T.; Chew, T.C.; Low, H.T., Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with PIV techniques, J. biomech., 31, 411-421, (1998)
[31] O’Malley, C.D.; Saunders, C.M., Leonardo da vinci on the human body, (1952), Henry Schuman New York
[32] Pekeris, C.L., Solution of the Boltzmann-Hilbert integral equation, Proc. nat. acad. soc., 41, 661, (1955) · Zbl 0065.09202
[33] O. Pelliccioni, Analysis of transient blood flow passing through mechanical heart valves by lattice Boltzmann methods, Ph.D. Thesis, Universidad Central de Venezuela, Caracas, Venezuela, 2005.
[34] Pelliccioni, O.; Cerrolaza, M.; Herrera, M., Three-dimensional flow through the Björk-shiley artificial valve in aortic position: computational analysis between the FEM and lattice methods, (), 977-986, (in Spanish)
[35] Sun, C.; Migliorini, C.; Munn, L.L., Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis, Biophys. J., 85, 1, 208-222, (2003)
[36] Tang, D.; Yang, C.; Kobayashi, S.; Zheng, J.; Vito, R.P., Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid – structure interaction model, Ann. biomed. eng., 31, 10, 1182-1193, (2003)
[37] Teixeira, P.; Awruch, A., Numerical simulation of fluid – structure interaction using the finite element method, Comput. fluids, 34, 2, 249-273, (2005) · Zbl 1179.74037
[38] Thubrikar, M., The aortic valve, (1990), CRC Press Boca Raton, Florida
[39] van Steenhoven, A.; van Dongen, M., Model studies of the closing behaviour of the aortic valve, J. fluid mech., 90, 1, 21-32, (1979)
[40] van Steenhoven, A.; Verlaan, C.; Veenstra, P.; Reneman, R., An in-vivo cinematographic analysis of the behaviour of the aortic valve, Am. J. physiol., 240, 2, H286-H292, (1981)
[41] van Zuijlen, A.; Bijl, H., Implicit and explicit higher order time integration schemes for structural dynamics and fluid – structure interaction computations, Comput. struct., 83, 2-3, 93-105, (2005)
[42] Yoganathan, A.P.; Corcoran, W.H.; Harrison, E.C.; Carl, J.R., The Björk-shiley aortic prosthesis: flow characteristics, thrombus formation and tissue overgrowth, Circulation, 58, 70-76, (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.