×

Fluid-dynamic equations for granular particles in a host medium. (English) Zbl 1111.82044

J. Math. Phys. 46, No. 11, 113301, 20 p. (2005); erratum ibid. 52, No. 3, 039901, 2 p. (2011).
Summary: A kinetic model for a granular gas interacting with a given background by binary dissipative collisions is analyzed, with particular reference to the derivation of macroscopic equations for the fundamental observables. Particles are modelled as inelastic hard spheres under the assumption of collision dominated regime (small mean free path). Closure of the relevant moment equations is achieved by resorting to a maximum entropy principle, and two specific entropy functionals have been worked out in detail, in the class of the admissible ones for the relevant linear extended Boltzmann equation. Considered macroscopic fields include density, mass velocity, and granular temperature. In the hydrodynamic limit when the mean free path tends to zero, a single drift-diffusion equation of Navier-Stokes type is recovered for the only hydrodynamic variable of the physical problem.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76T25 Granular flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bisi, E., Iori, M., and Spiga, G. ”On the use of the Fourier transform in dilute granular flows,” Report 383, 1–15, Dipartimento di Matematica dell’Università di Parma, Parma, November 2004.
[2] DOI: 10.1007/s001610100066 · Zbl 0996.76093 · doi:10.1007/s001610100066
[3] Bisi M., Appl. Math. (Czech Republic) 50 pp 43– (2005)
[4] DOI: 10.1063/1.1805371 · Zbl 1187.76049 · doi:10.1063/1.1805371
[5] Bobylev A. V., Sov. Sci. Rev., Sect. C, Math. Phys. Rev. 7 pp 111– (1988)
[6] DOI: 10.1023/A:1018627625800 · Zbl 1056.76071 · doi:10.1023/A:1018627625800
[7] DOI: 10.1023/B:JOSS.0000041751.11664.ea · Zbl 1097.82021 · doi:10.1023/B:JOSS.0000041751.11664.ea
[8] DOI: 10.1023/A:1004675320309 · Zbl 1006.82024 · doi:10.1023/A:1004675320309
[9] DOI: 10.1007/978-1-4612-1039-9 · doi:10.1007/978-1-4612-1039-9
[10] Cercignani C., Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations (2000) · Zbl 0961.76002
[11] Chapman S., The Mathematical Theory of Non-uniform Gases (1970)
[12] DOI: 10.1063/1.166440 · Zbl 1055.76569 · doi:10.1063/1.166440
[13] DOI: 10.1017/CBO9780511524943 · doi:10.1017/CBO9780511524943
[14] Gorban A. N., Ann. Phys. (N.Y.) 11 pp 783– (2002)
[15] DOI: 10.1002/cpa.3160020403 · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[16] DOI: 10.1007/978-1-4899-6381-9 · doi:10.1007/978-1-4899-6381-9
[17] DOI: 10.1007/BF02179552 · Zbl 1081.82619 · doi:10.1007/BF02179552
[18] DOI: 10.1007/s10955-004-2267-7 · Zbl 1103.82023 · doi:10.1007/s10955-004-2267-7
[19] DOI: 10.1080/00411459108203906 · Zbl 0800.76399 · doi:10.1080/00411459108203906
[20] DOI: 10.1209/epl/i1999-00308-1 · doi:10.1209/epl/i1999-00308-1
[21] DOI: 10.1007/978-1-4684-0447-0 · doi:10.1007/978-1-4684-0447-0
[22] DOI: 10.1063/1.869163 · doi:10.1063/1.869163
[23] DOI: 10.1081/TT-200053937 · Zbl 1076.82043 · doi:10.1081/TT-200053937
[24] DOI: 10.1016/S0893-9659(04)90066-3 · Zbl 1083.82027 · doi:10.1016/S0893-9659(04)90066-3
[25] Viani, C., thesis, Università degli Studi di Parma, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.