×

Selection of the ground state for nonlinear Schrödinger equations. (English) Zbl 1111.81313


MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35Q55 NLS equations (nonlinear Schrödinger equations)
81U05 \(2\)-body potential quantum scattering theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1007/978-1-4684-0147-9
[2] Buslaev V. S., St. Petersburg Math. J. 4 pp 1111–
[3] V. S. Buslaev and G. S. Perel’man, Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2 164 (Amer. Math. Soc., Providence, RI, 1995) pp. 75–98. · Zbl 0841.35108
[4] DOI: 10.1016/S0294-1449(02)00018-5 · Zbl 1028.35139
[5] DOI: 10.1007/978-1-4612-5929-9
[6] Cazenave T., Textos de Métodos Matemáticos 26, in: An Introduction to the Nonlinear Schrödinger Equation (1989)
[7] Cycon H. L., Schrödinger Operators (1987)
[8] Coddington E., Theory of Ordinary Differential Equations (1955) · Zbl 0064.33002
[9] Fröhlich J., Commun. Math. Phys. 225 pp 223–
[10] DOI: 10.1002/cpa.1018 · Zbl 1031.35129
[11] DOI: 10.1007/BF01403504 · Zbl 0513.35007
[12] Davies E. B., Quantum Theory of Open Systems (1976) · Zbl 0388.46044
[13] DOI: 10.1002/cpa.3160430302 · Zbl 0731.35010
[14] DOI: 10.1016/0022-1236(87)90044-9 · Zbl 0656.35122
[15] DOI: 10.1007/978-1-4612-1140-2 · Zbl 0515.34001
[16] DOI: 10.1007/s00332-001-0002-y · Zbl 1005.78011
[17] Goodman R. H., J. Opt. Soc. Am. 19 pp 1635–
[18] DOI: 10.1007/BF01646348
[19] DOI: 10.1103/PhysRevLett.80.5032
[20] DOI: 10.1215/S0012-7094-79-04631-3 · Zbl 0448.35080
[21] DOI: 10.1002/cpa.3160440504 · Zbl 0743.35008
[22] DOI: 10.1016/S0167-2789(00)00047-6 · Zbl 0954.35142
[23] Kwong M., Arch. Ration. Mech. Anal. 105 pp 243–
[24] DOI: 10.1137/S0036141099363456 · Zbl 1097.35524
[25] DOI: 10.1007/s00220-003-0820-x · Zbl 1033.81027
[26] DOI: 10.1007/s002200100533 · Zbl 0996.82010
[27] Murata M., Japan J. Math. 6 pp 77–
[28] DOI: 10.1006/jdeq.1997.3345 · Zbl 0890.35016
[29] Reed M., Modern Methods of Mathematical Physics 1, in: Functional Analysis (1972) · Zbl 0242.46001
[30] Reed M., Modern Methods of Mathematical Physics 4, in: Analysis of Operators (1978) · Zbl 0401.47001
[31] DOI: 10.1007/s00222-003-0325-4 · Zbl 1063.35035
[32] DOI: 10.1016/0167-2789(88)90107-8 · Zbl 0694.35202
[33] DOI: 10.1007/BF02096645 · Zbl 0780.35106
[34] I. M. Sigal, Spectral and Scattering Theory; Proceedings of the Taniguchi international workshop, ed. M. Ikawa (Marcel Dekker, Inc., New York–Basel–Hong Kong, 1994) pp. 197–217.
[35] DOI: 10.1007/s000390050124 · Zbl 0917.35023
[36] DOI: 10.1023/B:JOSS.0000026738.52652.6e · Zbl 0936.35148
[37] DOI: 10.1007/s002220050303 · Zbl 0910.35107
[38] DOI: 10.1023/A:1007695606961 · Zbl 0930.35113
[39] DOI: 10.1103/RevModPhys.52.569
[40] Sulem C., The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse (1999) · Zbl 0928.35157
[41] DOI: 10.1002/cpa.3012 · Zbl 1031.35137
[42] Tsai T.-P., Int. Math. Res. Not. 31 pp 1629–
[43] DOI: 10.1081/PDE-120016161 · Zbl 1021.35113
[44] Vanderbauwhede A., Dynamics Reported 2
[45] DOI: 10.1007/s002200000298 · Zbl 1003.37045
[46] DOI: 10.1137/0516034 · Zbl 0583.35028
[47] DOI: 10.1002/cpa.3160390103 · Zbl 0594.35005
[48] DOI: 10.1007/BF01336768
[49] DOI: 10.2969/jmsj/04730551 · Zbl 0837.35039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.