×

zbMATH — the first resource for mathematics

Using a signature function to determine resonant and attenuant 2-cycles in the Smith-Slatkin population model. (English) Zbl 1110.92036
Summary: We study the responses of discretely reproducing populations to periodic fluctuations in three parameters: the carrying capacity and two demographic characteristics of the species. We prove that small 2-periodic fluctuations of the three parameters generate 2-cyclic oscillations of the population. We develop a signature function for predicting the responses of populations to 2-periodic fluctuations. Our signature function is the sign of a weighted sum of the relative strengths of the oscillations of the three parameters. Periodic environments are deleterious for populations when the signature function is negative, while positive signature functions signal favorable environments. We compute the signature function for the Smith-Slatkin model [see J. Maynard Smith, Models in ecology. (1974; Zbl 0312.92001)] and use it to determine regions in parameter space that are either favorable or detrimental to the species.

MSC:
92D25 Population dynamics (general)
37N25 Dynamical systems in biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beverton R.J.H., Fishery Investigations 2 pp 19– (1957)
[2] DOI: 10.1006/bulm.1997.0017 · Zbl 0973.92034 · doi:10.1006/bulm.1997.0017
[3] DOI: 10.1007/BF00356852 · Zbl 0607.92018 · doi:10.1007/BF00356852
[4] Cull P., Bulletin of Mathematical Biology 1 pp 67– (1988)
[5] Cull P., Scientiae Mathematicae Japonicae 58 pp 349– (2003)
[6] DOI: 10.1080/10236190108808308 · Zbl 1002.39003 · doi:10.1080/10236190108808308
[7] Elaydi S.N., Discrete Chaos (2000) · Zbl 0945.37010
[8] DOI: 10.1006/jmaa.1994.1037 · Zbl 0796.39004 · doi:10.1006/jmaa.1994.1037
[9] DOI: 10.1016/j.jde.2003.10.024 · Zbl 1067.39003 · doi:10.1016/j.jde.2003.10.024
[10] Elaydi S.N., Proceedings of ICDEA8, Brno (2003)
[11] Elaydi, S.N. and Sacker, R.J., Nonautonomous Beverton–Holt equations and the Cushing–Henson conjectures. Journal of Differential Equations and Applications, (In Press). · Zbl 1084.39005
[12] Elaydi, S.N. and Sacker, R.J., Periodic difference equations, populations biology and the Cushing–Henson conjectures, (Preprint). · Zbl 1105.39006
[13] DOI: 10.1080/10236190290027666 · Zbl 1048.39002 · doi:10.1080/10236190290027666
[14] DOI: 10.1016/S0022-247X(03)00417-7 · Zbl 1035.37020 · doi:10.1016/S0022-247X(03)00417-7
[15] DOI: 10.1016/j.jmaa.2005.04.061 · Zbl 1083.92037 · doi:10.1016/j.jmaa.2005.04.061
[16] DOI: 10.1080/10236190412331334563 · Zbl 1070.92049 · doi:10.1080/10236190412331334563
[17] DOI: 10.1080/10236190412331335436 · Zbl 1068.92038 · doi:10.1080/10236190412331335436
[18] DOI: 10.1080/10236190412331334563 · Zbl 1070.92049 · doi:10.1080/10236190412331334563
[19] Franke, J.E. and Yakubu, A.A., Signature function for predicting resonant and attenuant population 2-cycles. Bulletin of Mathematical Biology, (In press). · Zbl 1296.92203
[20] DOI: 10.2307/3863 · doi:10.2307/3863
[21] DOI: 10.2307/3886 · doi:10.2307/3886
[22] DOI: 10.1016/S0167-2789(99)00231-6 · Zbl 0957.37018 · doi:10.1016/S0167-2789(99)00231-6
[23] DOI: 10.1080/10236199908808169 · Zbl 0988.39011 · doi:10.1080/10236199908808169
[24] DOI: 10.1006/bulm.1999.0136 · Zbl 1323.92169 · doi:10.1006/bulm.1999.0136
[25] DOI: 10.1007/s002850050098 · Zbl 0890.92023 · doi:10.1007/s002850050098
[26] DOI: 10.1038/288699a0 · doi:10.1038/288699a0
[27] Kocic, V.L., A note on nonautonomous Beverton–Holt model. Journal of Differential Equations and Applications, (In press). · Zbl 1345.92118
[28] Kocic V.L., Mathematics and Its Applications 256 (1993)
[29] Kon, R., A note on attenuant cycles of population models with periodic carrying capacity. Journal of Differential Equations and Applications, (In press). · Zbl 1056.92046
[30] Kon, R., Attenuant cycles of population models with periodic carrying capacity. Journal of Differential Equations and Applications, (In press). · Zbl 1067.92048
[31] DOI: 10.1016/0040-5809(84)90038-8 · Zbl 0551.92014 · doi:10.1016/0040-5809(84)90038-8
[32] DOI: 10.1016/0025-5564(92)90012-L · Zbl 0746.92022 · doi:10.1016/0025-5564(92)90012-L
[33] DOI: 10.1086/283092 · doi:10.1086/283092
[34] DOI: 10.1038/261459a0 · Zbl 1369.37088 · doi:10.1038/261459a0
[35] May R.M., Stability and Complexity in Model Ecosystems (1974)
[36] DOI: 10.1126/science.186.4164.645 · doi:10.1126/science.186.4164.645
[37] Nisbet R.M., Modelling Fluctuating Populations (1982) · Zbl 0593.92013
[38] DOI: 10.1016/0040-5809(88)90036-6 · Zbl 0648.92015 · doi:10.1016/0040-5809(88)90036-6
[39] DOI: 10.1007/BF00276033 · Zbl 0426.92018 · doi:10.1007/BF00276033
[40] DOI: 10.1016/S0167-2789(01)00324-4 · Zbl 1018.37047 · doi:10.1016/S0167-2789(01)00324-4
[41] Smith J.M., Models in Ecology (1974)
[42] Utida S., Cold Spring Harbor Symposium on Quantitative Biology 22 pp 139– (1957)
[43] Yakubu A.-A., Difference Equations and Discrete Dynamical Systems (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.