×

zbMATH — the first resource for mathematics

On nonhomogeneous Bose condensation. (English) Zbl 1110.82005
Summary: We prove, in great generality, that in a system of bosons, whenever Bose condensation in a nonzero mode occurs then there is also spontaneous breaking of translation symmetry. In particular the proof holds for realistic Bose systems with two-body superstable interaction. This generalizes an old result proving that the occurrence of Bose-Einstein condensation in the zero mode implies spontaneous breaking of gauge invariance.
Reviewer: Reviewer (Berlin)

MSC:
82B10 Quantum equilibrium statistical mechanics (general)
82B23 Exactly solvable models; Bethe ansatz
82D50 Statistical mechanical studies of superfluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fannes M., Helv. Phys. Acta 55 pp 391– (1982)
[2] Ketterle W., C. R. Acad. Sci., Ser IV: Phys., Astrophys. 2 pp 339– (2001)
[3] DOI: 10.1088/0305-4470/38/23/007 · Zbl 1255.82008 · doi:10.1088/0305-4470/38/23/007
[4] Ruelle D., Statistical Mechanics (1969)
[5] Bratteli O., Operator Algebras and Quantum Statistical Mechanics 2, 2. ed. (1996)
[6] DOI: 10.1007/BF01625775 · Zbl 0399.46053 · doi:10.1007/BF01625775
[7] Dunford N., Linear Operators (1963)
[8] Kirzhnits D. A., Sov. Phys. JETP 59 pp 2203– (1970)
[9] DOI: 10.1007/BF01029350 · doi:10.1007/BF01029350
[10] DOI: 10.1103/PhysRevLett.26.174 · doi:10.1103/PhysRevLett.26.174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.