×

zbMATH — the first resource for mathematics

A travelling wave solution to the Ostrovsky equation. (English) Zbl 1110.76010
Summary: We consider a nonlinear evolution equation like Ostrovsky equation. By using the hyperbolic tangent method and an exponential function approach, a travelling wave solution for the Ostrovsky equation is presented. It is observed that both methods lead to the same type of solution.

MSC:
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76U05 General theory of rotating fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ablowitz, M.J.; Clarkson, P.A., Solitons, nonlinear evolution equations and inverse scattering transform, (1990), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Ablowitz, M.J.; Segur, H., Solitons and inverse scattering transformation, (1981), SIAM Philadelphia · Zbl 0299.35076
[3] Boyd, J.P.; Chen, G.Y., Five regimes of the quasi-cnoidal, steadily translating waves of the ratation modified korteweg – de Vries (Ostrovsky) equation, Wave motion, 35, 141-155, (2002) · Zbl 1163.74322
[4] Demiray, H., A travelling wave solution to the korteweg – de vries – burger equation, Appl. math. comput., 154, 665-670, (2004) · Zbl 1051.35065
[5] Fan, E.; Zhang, H., A note on the homogeneous balance method, Phys. lett. A, 246, 403-406, (1998) · Zbl 1125.35308
[6] Fan, E., Extented tanh-function method and its applications to nonlinear equations, Phys. lett. A, 277, 212, (2000) · Zbl 1167.35331
[7] Gilman, O.A.; Grimshaw, R.; Stepanyants, Yu.A., Approximate analytical and numerical solutions of the stationary Ostrovsky equation, Stud. appl. math., 95, 115-126, (1995) · Zbl 0843.76008
[8] Hirota, R., Direct method of finding exact solutions of nonlinear evolution equations, (), 1157-1175
[9] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys., 60, 650-654, (1992) · Zbl 1219.35246
[10] Malfliet, W.; Hereman, W., The tanh method: I. exact solutions of nonlinear evolution and wave equations, Phys. spc., 54, 569-575, (1996) · Zbl 0942.35035
[11] Ostrovsky, L.A., Nonlinear internal waves in a rotating Ocean, Oceanology, 18, 119-125, (1978)
[12] Rosenau, P.; Hyman, J.M., Compactons: solitons with finite wavelengths, Phys. rev. lett., 70-75, 564-567, (1993) · Zbl 0952.35502
[13] Senthilvelan, M.; Laksmanan, M., Lie symmetries, kac – moody – virasoro algebras and integrability of certain (2+1)-dimensional nonlinear evolution equations, J. nonlinear math. phys., 5, 190-211, (1998) · Zbl 1119.37324
[14] Vakhnenko, V.O.; Parkes, E.J., The two loop soliton of the Vakhnenko equation, Nonlinearity, 11, 1457-1464, (1998) · Zbl 0914.35115
[15] Vakhnenko, V.O.; Parkes, E.J., The calculation of multi-soliton solutions of Vakhnenko equation, Chaos, soliton and fractals, 13, 1819-1826, (2002) · Zbl 1067.37106
[16] Wadati, M., Introduction to solitons, Pramana: J. phys., 57, 5-6, 841-847, (2001)
[17] Wadati, M., The exact solution of the modified korteweg – de Vries equation, J. phys. soc. jpn., 32, 1681-1687, (1972)
[18] Wadati, M., The modified korteweg – de Vries equation, J. phys. soc. jpn., 34, 1289-1296, (1973) · Zbl 1334.35299
[19] Wang, M.L., Exact solutions for a compound kdv – burgers equation, Phys. lett. A, 213, 279-287, (1996) · Zbl 0972.35526
[20] Wazwaz, A.M., The tanh and the sine – cosine methods for a reliable treatment of the modified equal width equation and its variants, Commun. nonlinear sci. numer. simul., 11, 2, 148-160, (2006) · Zbl 1078.35108
[21] M Wazwaz, A., The tanh method and the sine – cosine method for solving the KP-MEW equation, Int. J. comput. math., 82, 2, 235-246, (2005) · Zbl 1064.65119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.