×

zbMATH — the first resource for mathematics

Stability theorems for spaces of rational curves. (English) Zbl 1110.58303

MSC:
58D99 Spaces and manifolds of mappings (including nonlinear versions of 46Exx)
58E99 Variational problems in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1007/BF01609489 · Zbl 0387.55009 · doi:10.1007/BF01609489
[2] DOI: 10.1007/BF01222725 · Zbl 0423.32015 · doi:10.1007/BF01222725
[3] DOI: 10.1007/BF02392569 · Zbl 0844.57037 · doi:10.1007/BF02392569
[4] DOI: 10.2307/2946532 · Zbl 0816.55002 · doi:10.2307/2946532
[5] DOI: 10.1007/BF01388749 · Zbl 0604.14047 · doi:10.1007/BF01388749
[6] DeConcini C., Springer Lecture Notes 996 pp 1–
[7] DOI: 10.1112/jlms/s2-23.2.303 · Zbl 0432.58012 · doi:10.1112/jlms/s2-23.2.303
[8] DOI: 10.1007/BF02392839 · Zbl 0696.58014 · doi:10.1007/BF02392839
[9] DOI: 10.2307/2374428 · Zbl 0564.58014 · doi:10.2307/2374428
[10] DOI: 10.1007/BF02392803 · Zbl 0826.14035 · doi:10.1007/BF02392803
[11] Hurtubise J. C., Math. 466 pp 111– (1995)
[12] DOI: 10.1093/qmath/27.4.433 · Zbl 0342.55010 · doi:10.1093/qmath/27.4.433
[13] Hurtubise J. C., J. Diff. Geom. 43 pp 99– (1996) · Zbl 0853.58022 · doi:10.4310/jdg/1214457899
[14] DOI: 10.1007/BF02384399 · Zbl 0625.14026 · doi:10.1007/BF02384399
[15] DOI: 10.5802/aif.1171 · Zbl 0649.32021 · doi:10.5802/aif.1171
[16] Mann B. M., J. Diff. Geom. 33 (2) pp 301– (1991) · Zbl 0736.54008 · doi:10.4310/jdg/1214446318
[17] Mann B. M., J. Diff. Geom. 38 pp 39– (1993) · Zbl 0790.53053 · doi:10.4310/jdg/1214454095
[18] DOI: 10.1007/BF01679711 · Zbl 0248.32021 · doi:10.1007/BF01679711
[19] DOI: 10.1007/BF02392088 · Zbl 0427.55006 · doi:10.1007/BF02392088
[20] Taubes C. H., J. Diff. Geom. 29 pp 163– (1989) · Zbl 0669.58005 · doi:10.4310/jdg/1214442641
[21] DOI: 10.1007/BF01459729 · Zbl 0788.32013 · doi:10.1007/BF01459729
[22] Tian Y., J. Diff. Geom. 44 pp 178– (1996) · Zbl 0870.58012 · doi:10.4310/jdg/1214458742
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.