×

zbMATH — the first resource for mathematics

Core and intersection number for group actions on trees. (Cœur et nombre d’intersection pour les actions de groupes sur les arbres.) (French. English summary) Zbl 1110.20019
Given two splittings of a group \(G\) as graphs of groups, the Bass-Serre theory produces two actions of \(G\) on two simplicial trees. In this paper, the author introduces a geometric construction of a ‘convex core’ for the diagonal action of \(G\) on the product of these trees. More generally, he associates a convex core to the product of two actions of a group on \(\mathbb{R}\)-trees. This construction generalizes and unifies the following notions: the intersection number of simple closed curves and of measured foliations on surfaces; the Culler-Levitt-Shalen convex core associated to two actions on \(\mathbb{R}\)-trees dual to measured foliations; the Fujiwara-Papasoglu JSJ decomposition providing a surface in the product of two simplicial trees, which is also related to an intersection number defined by Scott and Swarup.
As an application of the notions introduced, the author proves that an irreducible automorphism of a free group whose stable and unstable trees are geometric is induced by a pseudo-Anosov homeomorphism of the surface. The author notes this last result has also been obtained by Mosher and Handel, using other methods.
An English version of the paper under review is available on arxiv,
http://arxiv.org/abs/math.GR/0407206.

MSC:
20E08 Groups acting on trees
20F65 Geometric group theory
20E05 Free nonabelian groups
20E36 Automorphisms of infinite groups
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML arXiv
References:
[1] Bestvina M. , Feighn M. , Handel M. , Laminations, trees, and irreducible automorphisms of free groups , Geom. Funct. Anal. 7 ( 2 ) ( 1997 ) 215 - 244 . MR 1445386 | Zbl 0884.57002 · Zbl 0884.57002 · doi:10.1007/PL00001618
[2] Bestvina M. , Feighn M. , Handel M. , Erratum to: Laminations, trees, and irreducible automorphisms of free groups [Geom. Funct. Anal. 7 (2) (1997) 215-244 ; MR 98c:20045] , Geom. Funct. Anal. 7 ( 6 ) ( 1997 ) 1143 . MR 1445386 | Zbl 0884.57002 · Zbl 0884.57002 · doi:10.1007/PL00001618
[3] Bestvina M. , Handel M. , Train tracks and automorphisms of free groups , Ann. of Math. (2) 135 ( 1 ) ( 1992 ) 1 - 51 . MR 1147956 | Zbl 0757.57004 · Zbl 0757.57004 · doi:10.2307/2946562
[4] Bridson M.R. , Haefliger A. , Metric Spaces of Non-Positive Curvature , Grundlehren der Mathematischen Wissenschaften , vol. 319 , Springer , Berlin , 1999 . MR 1744486 | Zbl 0988.53001 · Zbl 0988.53001
[5] Bonahon F. , Bouts des variétés hyperboliques de dimension 3 , Ann. of Math. (2) 124 ( 1 ) ( 1986 ) 71 - 158 . MR 847953 | Zbl 0671.57008 · Zbl 0671.57008 · doi:10.2307/1971388
[6] Chiswell I. , Introduction to \Lambda -Trees , World Scientific , River Edge, NJ , 2001 . Zbl 1004.20014 · Zbl 1004.20014
[7] Culler , M., Levitt , G., Shalen , P., manuscrit non publié.
[8] Freedman M. , Hass J. , Scott P. , Least area incompressible surfaces in 3-manifolds , Invent. Math. 71 ( 3 ) ( 1983 ) 609 - 642 . MR 695910 | Zbl 0482.53045 · Zbl 0482.53045 · doi:10.1007/BF02095997 · eudml:143008
[9] Fathi A. , Laudenbach F. , Poénaru V. , Travaux de Thurston sur les surfaces , Société Mathématique de France , Paris , 1979 , Séminaire Orsay. MR 568308 | Zbl 0406.00016 · Zbl 0406.00016
[10] Fujiwara K. , Papasoglu P. , JSJ decomposition of finitely presented groups and complexes of groups , http://topo.math.u-psud.fr/ papazog/preprints.html . arXiv | MR 2221253 · Zbl 1097.20037 · topo.math.u-psud.fr
[11] Guirardel V. , Core and intersection number for group actions on \(R\)-trees , http://arxiv.org/abs/ math.GR/0407206 . arXiv · Zbl 1110.20019 · www.arxiv.org
[12] Handel M. , Mosher L. , Parageometric outer automorphisms of free groups , http://arxiv.org/abs/ math.GR/0410018 . arXiv | MR 2299450 · Zbl 1120.20042 · www.arxiv.org
[13] Levitt G. , \(R\)-Trees and the Bieri-Neumann-Strebel Invariant , Publ. Mat. 38 ( 1 ) ( 1994 ) 195 - 202 . MR 1291961 | Zbl 0829.20038 · Zbl 0829.20038 · doi:10.5565/PUBLMAT_38194_14 · eudml:41197
[14] Levitt , G., Lustig , M., Asymptotic periodicity for automorphisms of free groups and hyperbolic groups, en préparation.
[15] Levitt G. , Paulin F. , Geometric group actions on trees , Amer. J. Math. 119 ( 1 ) ( 1997 ) 83 - 102 . MR 1428059 | Zbl 0878.20019 · Zbl 0878.20019 · doi:10.1353/ajm.1997.0003 · muse.jhu.edu
[16] Lustig, M., A discrete action on the product of two non-simplicial \(R\)-trees, manuscrit non publié.
[17] Niblo G. , Sageev M. , Scott P. , Swarup G. , Minimal cubings , http://arxiv.org/abs/ math.GR/0401133 . arXiv | MR 2142089 · Zbl 1085.20026 · www.arxiv.org
[18] Sageev M. , Ends of group pairs and non-positively curved cube complexes , Proc. London Math. Soc. (3) 71 ( 3 ) ( 1995 ) 585 - 617 . MR 1347406 | Zbl 0861.20041 · Zbl 0861.20041 · doi:10.1112/plms/s3-71.3.585
[19] Scott P. , The symmetry of intersection numbers in group theory , Geom. Topology 2 ( 1998 ) 11 - 29 . MR 1608688 | Zbl 0897.20029 · Zbl 0897.20029 · doi:10.2140/gt.1998.2.11 · emis:journals/UW/gt/GTVol2/paper2.abs.html · eudml:119567
[20] Scott P. , Swarup G.A. , Splittings of groups and intersection numbers , Geom. Topology 4 ( 2000 ) 179 - 218 . MR 1772808 | Zbl 0983.20024 · Zbl 0983.20024 · doi:10.2140/gt.2000.4.179 · emis:journals/GT/GTVol4/paper6.abs.html · eudml:121731
[21] Scott P. , Swarup G.A. , Regular neighbourhoods and canonical decompositions for groups , Astérisque 289 ( 2003 ) vi+233 . MR 2032389 | Zbl 1036.20028 · Zbl 1036.20028
[22] Serre J.-P. , Arbres, amalgames, \({\mathrm{SL}}_{2}\) , Astérisque , vol. 46 , Société Mathématique de France , Paris , 1977 . MR 476875 | Zbl 0369.20013 · Zbl 0369.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.