×

zbMATH — the first resource for mathematics

Well balanced finite volume methods for nearly hydrostatic flows. (English) Zbl 1109.86304
Summary: In numerical approximations of nearly hydrostatic flows, a proper representation of the dominant hydrostatic balance is of crucial importance: unbalanced truncation errors can induce unacceptable spurious motions, e.g., in dynamical cores of models for numerical weather prediction (NWP) in particular near steep topography. In this paper we develop a new strategy for the construction of discretizations that are ”well-balanced” with respect to dominant hydrostatics. The classical idea of formulating the momentum balance in terms of deviations of pressure from a balanced background distribution is realized here through local, time dependent hydrostatic reconstructions. Balanced discretizations of the pressure gradient and of the gravitation source term are achieved through a “discrete Archimedes’ buoyancy principle”. This strategy is applied to extend an explicit standard finite volume Godunov-type scheme for compressible flows with minimal modifications. The resulting method has the following features: (i) It inherits its conservation properties from the underlying base scheme. (ii) It is exactly balanced, even on curvilinear grids, for a large class of near-hydrostatic flows. (iii) It solves the full compressible flow equations without reference to a background state that is defined for an entire vertical column of air. (iv) It is robust with respect to details of the implementation, such as the choice of slope limiting functions, or the particularities of boundary condition discretizations.

MSC:
86A10 Meteorology and atmospheric physics
86-08 Computational methods for problems pertaining to geophysics
76M12 Finite volume methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Software:
MM5
PDF BibTeX Cite
Full Text: DOI
References:
[1] Benoit, R.; Desdagné, M.; Pellerin, P.; Chartier, Y.; Desjardins, S., The Canadian MC2: a semi-Lagrange, semi-implicit wide-band atmospheric model suited for fine-scale process studies and simulation, Month. wea. rev., 125, 2382-2415, (1997)
[2] Bonaventura, L., A semi-implicit semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows, J. comput. phys., 158, 186-213, (2000) · Zbl 0963.76058
[3] Botta, N.; Klein, R.; Almgren, A., Asymptotic analysis of a dry atmosphere, () · Zbl 1057.86507
[4] Cargo, P.; Le Roux, A.Y., Un schéma équilibre adapté au modèle d’atmosphère avec termes de gravité, C.R. acad. sci. Paris, 318, Série I, 73-76, (1994) · Zbl 0805.76063
[5] Corby, A.; Gilchrist; Newson, R.L., A general circulation model of the atmosphere suitable for long period integration, Qjrms, 98, 809-832, (1972)
[6] R. Rotunno, D.J. Muraki, Revisiting Queney’s Flow over Mesoscale Topography. Technical report, AMS mountain meteorology meeting, 2000
[7] G. Doms, U. Schättler, The nonhydrostatic limited-area model lm (lokal-modell) of dwd: Part i, scientific documentation, Deutscher Wetterdienst, 1997
[8] Dudhia, J., A nonhydrostatic version of the penn state/NCAR mesoscale model: validation tests and simulation of an atlantic cyclone and cold front, Month. wea. rev., 121, 1493-1513, (1993)
[9] B. Einfeldt, Zur Numerik der stoßauflösenden Verfahren. Dissertation, RWTH Aachen, 1988 · Zbl 0658.76069
[10] J. Dudhia, G.A. Grell, D.R. Stauffer, A description of the fifth-generation Penn State/NCAR mesoscale weather model (MM5). Technical report, NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, Colorado, 1994
[11] Gal-Chen, T.; Sommerville, R.C.J., Numerical solutions of the navier – stokes equations with topography, J. comput. phys., 17, 276-310, (1975) · Zbl 0301.76012
[12] Gill, A.E., Atmosphere-Ocean dynamics, (1982), Academic Press New York
[13] Giraldo, F.X.; Hesthaven, J.S.; Warburton, T., Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations, J. comp. phys, 181, 2, 499-525, (2002) · Zbl 1178.76268
[14] Greenberg, J.M.; Le Roux, A.Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM numer. anal., 33, 1, 1-16, (1996) · Zbl 0876.65064
[15] D. Hempel, Rekunstruktionsverfahren auf unstrukturierten Gittern zur numerischen Simulation von Erhaltungsprinzipien. PhD thesis, Universität Hamburg, Fachbereich Mathematik, 1999
[16] Hunter, J.; Keller, J., Weakly nonlinear high frequency waves, Commun. pure appl. math., 36, 547-569, (1983) · Zbl 0547.35070
[17] Janjic, Z.I., A nonhydrostatic model based on a new approach, Meteor. atmos. phys., 82, 271-285, (2002)
[18] Jenny, P.; Müller, B., Rankine – hugoniot – riemann solver considering source terms and multidimensional effects, J. comput. phys., 145, 575-610, (1998) · Zbl 0926.76079
[19] Gallus, W.A.; Klemp, J.B., Behavior of flow over step orography, Month. wea. rev., 128, 1153-1164, (2000)
[20] Kapitza, H.; Eppel, D.P., The nonhydrostatic mesoscale model GESIMA. part I: dynamical equations and tests, Beitr. phys. atmosph., 65, 2, 129-146, (1992) · Zbl 0761.76098
[21] Klein, R., Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods, ZAMM - Z. angew. math. mech., 80, 765-777, (2000) · Zbl 1050.76056
[22] J.B. Klemp, The weather research and forecasting (wrf) model. Technical report, National Center for Atmospheric Research, Boulder, Colorado, http://www-unix.mcs.anl.gov/ michalak/ecmwf98/final.html
[23] Klemp, J.B.; Skamarock, W.C.; Fuhrer, O., Numerical consistency of metric terms in terrain-following coordinates, Month. wea. rev., 131, 1229-1239, (2003)
[24] van, B., Leer. towards the ultimate conservative difference scheme. I. the quest of monotonicity, Lecture notes phys., 18, 163-168, (1973)
[25] van Leer, B., Towards the ultimate conservative difference scheme. II. monotonicity and conservation combined in a second-order scheme, J. comput. phys., 14, 361-370, (1974) · Zbl 0276.65055
[26] van Leer, B., Towards the ultimate conservative difference scheme. III. upstream-centered finite-difference schemes for ideal compressible flow, J. comput. phys., 23, 263-275, (1977) · Zbl 0339.76039
[27] van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. comput. phys., 23, 276-299, (1977) · Zbl 0339.76056
[28] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[29] LeVeque, R.J., Numerical methods for conservation laws, (1990), Birkhäuser Basel · Zbl 0682.76053
[30] LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods, J. comput. phys., 146, 346-365, (1998) · Zbl 0931.76059
[31] Ed. M.A. Alaka, The airflow over mountains. Technical report, WMO Tech. Note 34, 1960
[32] Majda, A.J.; Klein, R., Systematic multi-scale models for the tropics, J. atmos. sci., 60, 393-408, (2003)
[33] Nakamura, H., Dynamical effects of mountains on the general circulation of the atmosphere. I. development of finite-difference schemes suitable for incorporating mountains, J. meteor. soc. jpn., 56, 317-339, (1978)
[34] Pedlosky, J., Geophisical fluid dynamics, (1987), Springer Berlin
[35] Pinty, J.-P.; Benoit, R.; Richard, E.; Laprise, R., Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems, Month. wea. rev., 123, 3042-3057, (1995)
[36] Queney, P., The problem of air flow over mountains: a summary of theoretical studies, Bull. am. meteor. soc., 29, 16-26, (1948)
[37] Courant, R.; Friedrichs, K.O.; Lewy, H., Über die partiellen differenzengleichungen der physik, Math. ann., 100, 32, (1928) · JFM 54.0486.01
[38] K. Saito, The JMA NWP system and the Nonhydrostatic Model NHM. Technical report, Japan Meteorological Agency, Tokyo, ksaito@npd.kishou.go.jp
[39] Saito, K.; Doms, G.; Schaettler, U.; Steppeler, J., 3-D mountain waves by the lokal – modell of DWD and the MRI mesoscale nonhydrostatic model, Papers meteorol. geophys., 49, 1, 7-19, (1998)
[40] Schär, C.; Leuenberger, D.; Fuhrer, O.; Lüthi, D.; Girard, C., A new terrain-following vertical coordinate formulation for atmospheric prediction models, Month. wea. rev., 130, 2459-2480, (2002)
[41] C.W. Schulz-Rinne, The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes. PhD thesis, Swiss Federal Institute of Technology, Diss. ETH No. 10297, 1993 · Zbl 0811.35082
[42] Simmons, A.J.; Burridge, D.M., An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates, Month. wea. rev., 109, 758-766, (1981)
[43] Smith, R.B., Linear theory of stratified hydrostatic flow past an isolated mountain, Tellus, 32, 348-364, (1980)
[44] Sweby, P.K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. numer. anal., 21, 995-1011, (1984) · Zbl 0565.65048
[45] Gerrit, J.P.; Janjic, Z.I.; Nickovic, S., An alternative approach to nonhydrostatic modeling, Month. wea. rev., 129, 1164-1178, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.