On the helicity in 3D-periodic Navier-Stokes equations. I: The non-statistical case. (English) Zbl 1109.76015

Summary: We consider the three-dimensional Navier-Stokes equations with potential forces and study the helicity of regular solutions which are periodic in space variables. We give a detailed description of the behavior of the helicity for large times. In particular, the following asymptotic dichotomy of the helicity is established: the helicity either is identically zero or is eventually non-zero and converges to zero as \(t^de^{-2h_0t}\) for time \(t\to \infty\). The relation between the helicity and the energy is also investigated in connection with that between the energy and enstrophy. Our study relies on the theory of asymptotic expansions of regular solutions of Navier-Stokes equations and its associated normalization map as well as on Phragmen-Lindelöf principle. The application of this principle is possible due to our proof that the domain of analyticity (in complexified time) of regular solutions contains (up to a logarithmic correction) a right half-plane.


76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35Q30 Navier-Stokes equations
Full Text: DOI


[1] Andre, Influence of helicity on the evolution of isotropic turbulence at high Renolds number, J. Fluid Mech. 81 pp 187– (1977) · Zbl 0369.76054
[2] Chen, The joint cascade of energy and helicity in three-dimensional turbulence, Phys. Fluids 15 pp 361– (2003) · Zbl 1185.76081
[3] Constantin, Navier-Stokes equations (1988)
[4] Foias, Navier-Stokes equations and turbulence (2001)
[5] Foias, Asymptotic behavior, as t of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J. 33 pp 459– (1984) · Zbl 0565.35087
[6] Foias, Linearization and normal form of the Navier-Stokes equations with potential forces, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 pp 1– (1987) · Zbl 0635.35075
[7] Foias, Asymptotic integration of Navier-Stokes equations with potential forces. I, Indiana Univ. Math. J. 40 pp 305– (1991) · Zbl 0739.35066
[8] Foias, Some analytic and geometric properties of solutions of the evolution Navier-Stokes equations, J. Math Pures Appl. 58 pp 334– (1979)
[9] Foias, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87 pp 359– (1989) · Zbl 0702.35203
[10] Guillope, Remarques à propos du comportement lorsque t , des solutions des équations de Navier-Stokes associées à une force nulle, Bull. Soc. Math. France 111 pp 151– (1983) · Zbl 0554.35098
[11] Iooss, Application de la théorie des semi-groupes àl’étude de la stabilité d’écoulements laminaires, J. Mécanique 8 pp 477– (1969)
[12] Kraichnan, Helical turbulence and absolute equilibrium, J. Fluid Mech. 59 pp 745– (1973) · Zbl 0272.76030
[13] Leray, Étude de diverses équations intégrales non linéares et de quelques problèmes que pose lhydrodynamique, J. Math. Pures Appl. 12 pp 1– (1933)
[14] Leray, Essai sur les mouvements plans dun liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 pp 331– (1934) · JFM 60.0727.01
[15] Leray, Essai sur le mouvement dun liquide visqueux emplissant lespace, Acta Math. 63 pp 193– (1934) · JFM 60.0726.05
[16] Levich, Certain problems in the theory of developed hydrodynamical turbulence, Phys. Rep. 151 pp 129– (1987)
[17] Moffatt, The degree of knottedness of tangled vortex lines, J. Fluid Mech. 36 pp 117– (1969) · Zbl 0159.57903
[18] Moffatt, Some developments in theory of turbulence, J. Fluid Mech. 173 pp 303– (1981) · Zbl 0471.76061
[19] Moffatt, Helicity in laminar and turbulent flow, Annual Rev. Fluid Mech. 24 pp 281– (1992)
[20] Moreau, Constantes dun îlot tourbillonnaire en fluide parfait barotrope, C. R. Acad. Sci. Paris 252 pp 2810– (1961) · Zbl 0151.41703
[21] Polya, Problems and theorems in analysis I (1972) · Zbl 0337.00008
[22] Ponce, Global stability of large solutions to the 3D Navier-Stokes equations, Commun. Math. Phys. 159 pp 329– (1994) · Zbl 0795.35082
[23] Tsinober, On the helical nature of three-dimensional coherent structures in turbulent flows, Phys. Lett. A 99 pp 321– (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.