×

zbMATH — the first resource for mathematics

Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays. (English) Zbl 1108.93062
Summary: This paper deals with the quadratic stability and linear state-feedback and output-feedback stabilization of switched delayed linear dynamic systems with, in general, a finite number of non-commensurate constant internal point delays. The results are obtained based on Lyapunov’s stability analysis via appropriate Krasovsky-Lyapunov’s functionals and the related stability study is performed to obtain both delay independent and delay dependent results. It is proved that the stabilizing switching rule is arbitrary if all the switched subsystems are quadratically stable and that it exists a (in general, non-unique) stabilizing switching law when the system is polytopic, stable at some interior point of the polytope but with non-necessarily stable parameterizations at the vertices defining the subsystems. It is also proved that two subsystems individually parametrized in different polytopic-type sets which are not quadratically stable might be stabilized by a (in general, non-unique) switching law provided that a convexity-type condition is fulfilled at each existing pair of vertices, one corresponding to each subsystem. Some extensions are provided for a typical class of neutral time-delay systems.

MSC:
93D15 Stabilization of systems by feedback
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Narendra, K.S.; Balakrihsnan, V., A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE trans. automat. control, 39, 12, 753-774, (1994)
[2] Wicks, M.; Peleties, P.; DeCarlo, R., Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems, Eur. J. control, 4, 2, 140-147, (1998) · Zbl 0910.93062
[3] Xu, X.; Antsaklis, P.J., Stabilization of second-order LTI switched systems, Int. J. control, March 2004, 73, 14, 1261-1279, (2000) · Zbl 0992.93078
[4] Sun, Z.; Ge, S.S., Dynamic output feedback stabilization of a class of switched linear systems, IEEE trans. circ. syst. I - fund. theory appl., 50, 8, 1111-1115, (2003) · Zbl 1368.93567
[5] Zhai, G.; Lin, H.; Antsaklis, P., Quadratic stabilizability of switched linear systems with polytopic uncertainties, Int. J. control, March 2004, 76, 7, 2469-2471, (2003)
[6] Sun, Z., A robust stabilizing law for switched linear systems, Int. J. control, March 2004, 77, 4, 389-398, (2004) · Zbl 1059.93121
[7] Wang, F.; Balakrishnan, V., Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems, IEEE trans. automat. control, 47, 5, 720-734, (2002) · Zbl 1364.93582
[8] Bacciotti, A., Stabilization by means of state space depending switching rules, Syst. control lett., 53, 195-201, (2004) · Zbl 1157.93480
[9] Alonso-Quesada, S.; De la Sen, M., Robust adaptive control with multiple estimation models for stabilization of a class of non-inversely stable time-varying plants, Asian J. control, 6, 1, 59-73, (2004)
[10] Ibeas, A.; De la Sen, M.; Alonso-Quesada, S., Stable multi-estimation model for single-input single-output discrete adaptive control systems, Int. J. syst. sci., 35, 4, 479-501, (2004) · Zbl 1064.93025
[11] Niculescu, S.I., ()
[12] G. Xie, L. Wang, Stability and stabilization of switched linear systems with state delay: continuous- time case, in: 16th Int. Symp. on Mathematical Theory of Networks and Systems, Katholieke Universitat Leuven, Belgium, MTNS 2004, Leuven, July 5-9, Session Switched Linear Systems I, MA2, 2004.
[13] Jugo, J.; de la Sen, M., Input-output based pole-placement for a class of time-delay systems, IEE proc. control theory appl., 149, 4, 323-330, (2002)
[14] De la Sen, M., On pole-placement controllers for linear time-delay systems with commensurate delays, Math. probl. eng., 2005, 1, 123-140, (2005) · Zbl 1140.93385
[15] De la Sen, M., Allocation of poles of delayed systems reduced to those associated with their undelayed counterparts, Electron. lett., 36, 4, 373-374, (2000)
[16] De la Sen, M., On the asymptotic hyperstability of dynamic systems with point delays, IEEE trans. circ. syst. I - fund. theory appl., 50, 11, 1486-1488, (2003) · Zbl 1368.93517
[17] K. Galkowski, State-space realisations of linear 2-D systems with extensions to the general nD (n>2) case, Lecture Notes in Control and Information Series, vol. 263, 1, 2001. · Zbl 1007.93001
[18] Richard, J.P., Time-delay systems: an overview of some recent advances and open problems, Automatica, 38, 10, 1667-1694, (2003) · Zbl 1145.93302
[19] Yu, Y., On stabilizing uncertain linear delay systems, J. optim. theory appl., 41, 3, 503-508, (1983) · Zbl 0501.93051
[20] Mahmoud, M.S.; Almuthairi, N.F., Quadratic stabilization of continuous-time systems with state-delay and norm-bounded time-varying uncertainties, IEEE trans. automat. control, 39, 10, 2135-2139, (1994) · Zbl 0925.93585
[21] Choi, H.H.; Chung, M.J., Memoryless stabilization of uncertain dynamic-systems with time-varying delayed states and controls, Automatica, 31, 9, 1349-1351, (1995) · Zbl 0825.93654
[22] Li, X.; deSouza, C.E., Criteria for robust stability and stabilization of uncertain linear systems with state delay, Automatica, 33, 9, 1657-1662, (1997)
[23] Luo, N.S.; De la Sen, M.; Rodellar, J., Robust stabilization of a class of uncertain time delay systems in sliding mode, Int. J. robust nonlinear control, 76, 1, 59-74, (1997) · Zbl 0878.93055
[24] El-Khazali, R., Variable structure robust control of uncertain time-delay systems, Automatica, 34, 3, 327-332, (1998) · Zbl 0965.93025
[25] Richard, J.P.; Gouaisbaut, F.; Perruquetti, W., Sliding mode control in the presence of delay, Kybernetika, 37, 3, 277-294, (2001) · Zbl 1265.93046
[26] Orlov, Y.; Perruquetti, W.; Richard, J.P., Sliding mode control synthesis of uncertain time-delay systems, Asian J. control, 5, 4, 568-577, (2003)
[27] Yan, J.J., Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs, Int. J. nonlinear robust control, 13, 6, 519-532, (2003) · Zbl 1023.93015
[28] Chen, J.J., New stability criteria for a class of neutral systems with discrete and distributed time-delays: an LMI approach, Appl. math. comput., 150, 3, 719-736, (2004) · Zbl 1043.93038
[29] Niu, Y.; Lam, J.; Wang, X., Sliding-mode control for uncertain neutral delay systems, IEEE proc. control theory appl., 151, 1, 38-44, (2004)
[30] Niu, Y.; Lam, J.; Wang, X.; Ho, D.W.C., Observer-based sliding mode control for nonlinear state-delayed systems, Int. J. syst. sci., 35, 2, 139-150, (2004) · Zbl 1059.93025
[31] Hsu, K.C., Decentralized sliding mode control for large-scale time-delayed systems with series nonlinearities, J. dyn. syst., measur. control – trans. ASME, 121, 4, 708-713, (1999)
[32] Oucheriah, S., Exponential stabilization of linear delayed systems using sliding- mode controllers, IEEE trans. circ. syst. I - fund. theory appl., 50, 6, 826-830, (2003) · Zbl 1368.93560
[33] De la Sen, M., Sufficiency-type stability and stabilization criteria for linear time-invariant systems with constant point delay, Acta appl. math., 83, 3, 235-256, (2004) · Zbl 1067.34078
[34] De la Sen, M.; Luo, N.S., On the uniform exponential stability of a wide class of linear time-delay systems, J. math. anal. appl., 289, 2, 456-476, (2004) · Zbl 1046.34086
[35] De Bedout, J.M.; Franchek, M.A.; Bajaj, A.K., Robust control of chaotic vibrations for impacting heat exchanger tubes in cross-flow, J. sound vib., 227, 1, 183-204, (1999)
[36] Jafarov, E.M.; Tasaltin, R., Robust sliding- mode control for the uncertain MIMO aircraft model F-18, IEEE trans. aerospace electron. syst., 36, 4, 1127-1141, (2000)
[37] Zheng, F.; Frank, P.M., Finite-dimensional variable structure control design for systems with a single time delay, IEEE trans. aerospace electron. syst., 36, 4, 1127-1141, (2000)
[38] Zheng, F.; Frank, P.M., Finite-dimensional variable structure control design for distributed delay systems, Int. J. control, 74, 4, 398-408, (2001) · Zbl 1033.93008
[39] De la Sen, M., On the hyperstability of a class of hybrid systems, Int. J. syst. sci., 28, 9, 925-934, (1997) · Zbl 0887.93051
[40] Barcena, R.; Sagastabeitia, I.; De la Sen, M., Improving the stability properties of the zeros of sampled data systems with fractional order hold, Proc. IEE. control theory appl., 147, 4, 456-464, (2000)
[41] Liang, S.; Ishitobi, M.; Zhu, Q., Improvement of stability of zeros in discrete-time multivariable systems using fractional-order hold, Int. J. control, 76, 17, 1699-1711, (2003) · Zbl 1047.93033
[42] Kreindle, E.; Jameson, A., Conditions for nonnegativeness of partitioned matrices, IEEE trans. automat. control, 17, 1, 147, (1972) · Zbl 0262.15015
[43] Zhan, X., Matrix inequalities, Lecture notes in mathematics series, vol. 1790, (2001), Springer-Verlag Berlin
[44] De la Sen, M.; Bilbao-Guillerna, A., Fractional hold circuits versus positive realness of discrete transfer functions, Discr. dyn. nat. soc., 2005, 3, 373-378, (2005) · Zbl 1136.93319
[45] Zhang, Y.; Sun, J.T., Stability of impulsive linear differential equations with time delay, IEEE trans. circ. syst. II - exp. briefs, 52, 10, 701-705, (2005)
[46] Zhang, Y.; Sun, J.T., Impulsive control of second-order differential equations with time delay, Dyn. contin. discr. impul. syst. series A - math. anal., 13, 3-4, 445-452, (2006) · Zbl 1102.34329
[47] De la Sen, M., Asymptotic hyperstability under unstructured and structured modeling deviations from the linear behavior, Nonlinear anal. - real world appl., 7, 2, 248-264, (2006) · Zbl 1093.93023
[48] De la Sen, M., Robust stable pole-placement adaptive control of linear systems with multiestimation, Appl. math. comput., 172, 2, 1145-1174, (2006) · Zbl 1111.93029
[49] De la Sen, M., On the adaptive control of a class of SISO dynamic hybrid systems, Appl. numer. math., 56, 5, 618-647, (2006) · Zbl 1111.93040
[50] Diao, H.I., Structured perturbations of Drazin inverse, Appl. math. comput., 158, 2, 419-432, (2004) · Zbl 1072.15005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.