×

zbMATH — the first resource for mathematics

Social choice and electoral competition in the general spatial model. (English) Zbl 1108.91023
Summary: This paper extends the theory of the core, the uncovered set, and the related undominated set to a general set of alternatives and an arbitrary measure space of voters. We investigate the properties of social preferences generated by simple games; we extend results on generic emptiness of the core; we prove the general nonemptiness of the uncovered and undominated sets; and we prove the upper hemicontinuity of these correspondences when the voters’ preferences are such that the core is nonempty and externally stable. Finally, we give conditions under which the undominated set is lower hemicontinuous.

MSC:
91B14 Social choice
91B12 Voting theory
91D25 Spatial models in sociology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aliprantis, C.; Border, K., Infinite dimensional analysisa Hitchhiker’s guide, (1999), Springer New York · Zbl 0938.46001
[2] Armstrong, T., Arrow’s theorem with restricted coalition algebras, J. math. econ., 7, 55-75, (1980) · Zbl 0427.90005
[3] Arrow, K., Social choice and individual values, (1963), Yale University Press New Haven
[4] Austen-Smith, D.; Banks, J., Positive political theory icollective preference, (1999), University of Michigan Press Ann Arbor
[5] Banks, J., Singularity theory and core existence in the spatial model, J. math. econ., 24, 523-536, (1995) · Zbl 0843.90006
[6] J. Banks, J. Duggan, A bargaining model of collective choice, Caltech Social Science Working Paper no. 1053, 1999.
[7] Banks, J.; Duggan, J., A bargaining model of collective choice, Amer. polit. sci. rev., 94, 73-88, (2000)
[8] Banks, J.; Duggan, J.; Le Breton, M., Bounds for mixed strategy equilibria and the spatial model of elections, J. econ. theory, 103, 88-105, (2002) · Zbl 1022.91001
[9] Billingsley, P., Probability and measure, (1995), Wiley New York · Zbl 0822.60002
[10] Bordes, G.; Le Breton, M.; Salles, M., Gillies and Miller’s subrelations of a relation over an infinite set of alternativesgeneral results and applications to voting games, Math. oper. res., 17, 509-518, (1992) · Zbl 0760.90003
[11] Caplin, A.; Nalebuff, B., On 64% majority voting, Econometrica, 56, 787-814, (1988) · Zbl 0644.90006
[12] Cox, G., Non-collegial simple games and the nowhere denseness of the set of preference profiles having a core, Soc. choice welfare, 1, 159-164, (1984) · Zbl 0587.90105
[13] Cox, G., The uncovered set and the core, Amer. J. polit. sci., 31, 408-422, (1987)
[14] Davis, O.; Degroot, M.; Hinich, M., Social preference orderings and majority rule, Econometrica, 40, 147-157, (1972) · Zbl 0261.90006
[15] Davis, O.; Hinich, M., A mathematical model of policy formation in a democratic society, ()
[16] Debreu, G., Continuity properties of Paretian utility, Int. econ. rev., 5, 285-293, (1964) · Zbl 0138.16301
[17] Downs, A., An economic theory of democracy, (1957), Harper & Row New York
[18] J. Duggan, Equilibrium existence in discontinuous zero-sum games with applications to spatial models of elections, mimeo, University of Rochester, 2002.
[19] J. Duggan, M. Jackson, Mixed strategy equilibrium and deep covering in multidimensional electoral competition, mimeo, 2004.
[20] Duggan, J.; Le Breton, M., Mixed refinements of Shapley’s saddles and weak tournaments, Soc. choice welfare, 18, 65-78, (2001) · Zbl 1069.91503
[21] Dutta, B.; Laslier, J.-F., Comparison functions and choice correspondences, Soc. choice welfare, 16, 513-532, (1999) · Zbl 1066.91535
[22] Farquharson, R., The theory of voting, (1969), Yale University Press New Haven
[23] Feld, S.; Grofman, B.; Hartley, R.; Kilgour, M.; Miller, N., The uncovered set in spatial voting games, Theory dec., 23, 129-155, (1987) · Zbl 0636.90105
[24] Feld, S.; Grofman, B.; Miller, N., Centripetal forces in spatial votingon the size of the yolk, Public choice, 59, 37-50, (1988)
[25] Fey, M., May’s theorem with an infinite population, Soc. choice welfare, 23, 275-294, (2004) · Zbl 1090.91020
[26] Fishburn, P., Arrow’s impossibility theoremconcise proof and infinite voters, J. econ. theory, 2, 103-106, (1970)
[27] Fishburn, P., Condorcet social choice functions, SIAM J. appl. math., 33, 469-489, (1977) · Zbl 0369.90002
[28] Fisher, D.; Ryan, J., Optimal strategies for a generalized ‘scissors, paper, and stone’ game, Amer. math. monthly, 99, 935-942, (1992) · Zbl 0776.05047
[29] A. Gomberg, C. Martinelli, R. Torres, Anonymity in large societies, mimeo, Instituto Tecnológico Autónomo de México, 2002. · Zbl 1132.91412
[30] Grandmont, J., Intermediate preferences and majority rule, Econometrica, 46, 317-330, (1978) · Zbl 0387.90007
[31] Halmos, P., Naive set theory, (1960), Springer Berlin · Zbl 0087.04403
[32] Hartley, R.; Kilgour, M., The geometry of the uncovered set, Math. soc. sci., 14, 175-183, (1987) · Zbl 0637.90005
[33] Hildenbrand, W., Core and equilibria of a large economy, (1974), Princeton University Press Princeton · Zbl 0351.90012
[34] Kirman, A.; Sonderman, D., Arrow’s theorem, many agents, and invisible dictators, J. econ. theory, 5, 267-277, (1972)
[35] Koehler, D., The size of the yolkcomputations for odd and even-numbered committees, Soc. choice welfare, 7, 231-245, (1990) · Zbl 0712.90016
[36] Kramer, G., Sophisticated voting over multidimensional spaces, J. math. soc., 2, 165-180, (1972) · Zbl 0282.92010
[37] Kramer, G., Existence of an electoral equilibrium, ()
[38] Laffond, G.; Laslier, J.-F.; Le Breton, M., The bipartisan set of a tournament game, Games econ. behav., 5, 182-201, (1993) · Zbl 0770.90080
[39] Laslier, J.-F., Tournament solutions and majority voting, (1997), Springer New York · Zbl 0948.91504
[40] Le Breton, M., On the core of voting games, Soc. choice welfare, 4, 295-305, (1987) · Zbl 0636.90099
[41] Mas-Colell, A., On the continuous representation of preorders, Int. econ. rev., 18, 509-513, (1977) · Zbl 0403.90002
[42] McKelvey, R., Intransitivities in multi-dimensional voting models and some implications for agenda control, J. econ. theory, 12, 472-482, (1976) · Zbl 0373.90003
[43] McKelvey, R., General conditions for global intransitivities in formal voting models, Econometrica, 47, 1086-1112, (1979) · Zbl 0411.90009
[44] McKelvey, R., Covering, dominance, and institution-free properties of social choice, Amer. J. polit. sci., 30, 283-314, (1986)
[45] McKelvey, R.; Ordeshook, P.; Ungar, P., Conditions for voting equilibria in continuous voter distributions, SIAM J. appl. math., 39, 161-168, (1980) · Zbl 0441.90006
[46] Miller, N., A new solution set for tournaments and majority votingfurther graph-theoretical approaches to the theory of voting, Amer. J. polit. sci., 24, 68-96, (1980)
[47] Moulin, H., Choosing from a tournament, Soc. choice welfare, 3, 271-291, (1986) · Zbl 0618.90004
[48] Myerson, R., Incentives to cultivate favored minorities under alternative electoral systems, Amer. polit. sci. rev., 87, 856-869, (1993)
[49] P. Ordeshook, The spatial analysis of elections and committees: four decades of research, mimeo, California Institute of Technology, 1993.
[50] E. Penn, Alternate definitions of the uncovered set and their implications, mimeo, California Institute of Technology, 2002.
[51] Peris, J.; Subiza, B., Condorcet choice correspondences for weak tournaments, Soc. choice welfare, 16, 217-231, (1999) · Zbl 1066.91541
[52] Plott, C., A notion of equilibrium and its possibility under majority rule, Amer. econ. rev., 57, 787-806, (1967)
[53] Repovš, D.; Semenov, P., Continuous selections of multivalued mappings, (1998), Kluwer Academic Publishers Boston · Zbl 0915.54001
[54] Riker, W., Implications from the disequilibrium of majority rule for the study of institutions, Amer. polit. sci. rev., 74, 432-446, (1980)
[55] Rubinstein, A., A note on the nowhere denseness of societies having an equilibrium under majority rule, Econometrica, 47, 511-514, (1979) · Zbl 0416.90006
[56] Saari, D., The generic existence of a core for q-rules, Econ. theory, 9, 219-260, (1997) · Zbl 0886.90043
[57] Schofield, N., Generic instability of majority rule, Rev. econ. stud., 50, 695-705, (1983) · Zbl 0521.90011
[58] Shapley, L., Simple gamesan outline of the descriptive theory, Behav. sci., 7, 59-66, (1962)
[59] Shepsle, K.; Weingast, B., Uncovered sets and sophisticated voting outcomes with implications for agenda institutions, Amer. J. polit. sci., 28, 49-74, (1984)
[60] Sikorski, R., Boolean algebras, (1964), Springer New York · Zbl 0191.31505
[61] C. Tovey, The almost surely shrinking yolk, mimeo, 1992. · Zbl 1200.91093
[62] Tullock, G., The general irrelevance of the general possibility theorem, Quart. J. econ., 81, 256-270, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.