×

zbMATH — the first resource for mathematics

The myopic order-up-to policy with a proportional feedback controller. (English) Zbl 1108.90007
Summary: We develop a discrete control theory model of a myopic Order-Up-To (OUT) policy reacting to a stochastic demand pattern with Auto Regressive and Moving Average (ARMA) components. We show that the bullwhip effect arises with such a policy despite the fact that it is optimal when the ordering cost is linear. We then derive a set of z-transform transfer functions of a modified OUT policy that allows us to avoid the bullwhip problem by incorporating a proportional controller into the inventory position feedback loop. With this technique, the order variation can always be reduced to the same level as the demand variation. However, bullwhip-effect avoidance always comes at the cost of holding extra inventory. When the ordering cost is piece-wise linear and increasing, we compare the total cost per period under the two types of control policies: with and without bullwhip-effect reduction. Numerical examples reveal that the cost saving can be substantial if the order variance is reduced by using the proportional controller.

MSC:
90B05 Inventory, storage, reservoirs
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1057/jors.1966.76 · doi:10.1057/jors.1966.76
[2] Alwyn, LC. Bullwhip realities. Miami Beach. Unpublished proceedings of the INFORMS 2001 conference, USA 4th–7th November
[3] DOI: 10.1109/TAC.1970.1099492 · doi:10.1109/TAC.1970.1099492
[4] DOI: 10.1016/0167-188X(89)90120-1 · doi:10.1016/0167-188X(89)90120-1
[5] Box GE, Time Series Analysis Forecasting and Control (1970)
[6] Brown RG, Smoothing, Forecasting and Prediction of Discrete Time Series (1963)
[7] DOI: 10.1016/0360-8352(78)90010-4 · doi:10.1016/0360-8352(78)90010-4
[8] DOI: 10.1287/mnsc.46.3.436.12069 · Zbl 1231.90019 · doi:10.1287/mnsc.46.3.436.12069
[9] DOI: 10.1016/S0377-2217(02)00369-7 · Zbl 1026.90030 · doi:10.1016/S0377-2217(02)00369-7
[10] DOI: 10.1016/S0377-2217(02)00808-1 · Zbl 1099.90503 · doi:10.1016/S0377-2217(02)00808-1
[11] DOI: 10.1049/tpe.1967.0011 · doi:10.1049/tpe.1967.0011
[12] Disney, SM. 2001. ”The production and inventory control problem in Vendor Managed Inventory supply chains”. Wales: Unpublished PhD Dissertation, Cardiff University.
[13] DOI: 10.1016/S0305-0483(03)00028-8 · doi:10.1016/S0305-0483(03)00028-8
[14] Disney, SM, Farasyn, I, Lambrecht, M, Towill, DR and Van de Velde, W. EUROMA POMS Conference. 16–18 June, Como Lake, Italy. Creating win–win scenarios from the bullwhip problem–by design not accident, pp.561–570.
[15] DOI: 10.1287/mnsc.1040.0308 · Zbl 1232.90052 · doi:10.1287/mnsc.1040.0308
[16] Grubbström, RW. 1998. ”The fundamental equations of MRP theory in discrete time. Working Paper No. 254, Department of Production Economics”. Sweden: Linköping University.
[17] Grubbström, RW and Andersson, L-E. 2002. ”The multiplication theorem of the z-transform. Working Paper No. 304, Linköping”. Sweden: Institute of Science and Technology.
[18] DOI: 10.1016/j.omega.2004.11.005 · doi:10.1016/j.omega.2004.11.005
[19] John S, Int. J. Manuf. Syst. Des. 1 pp 283– (1994)
[20] DOI: 10.1287/mnsc.21.11.1303 · Zbl 0307.90019 · doi:10.1287/mnsc.21.11.1303
[21] Jury EI, Inners and Stability of Dynamic Systems (1974)
[22] DOI: 10.1287/mnsc.6.3.231 · Zbl 0995.90505 · doi:10.1287/mnsc.6.3.231
[23] DOI: 10.1002/nav.10065 · Zbl 1043.90005 · doi:10.1002/nav.10065
[24] Lee HL, Manag. Sci. 43 pp 543– (1997)
[25] Lee HL, Sloan Manag. Rev. 38 pp 93– (1997)
[26] DOI: 10.1287/mnsc.46.5.626.12047 · Zbl 1231.90044 · doi:10.1287/mnsc.46.5.626.12047
[27] Magee JF, Harvard Bus. Rev 34 pp 106– (1956)
[28] DOI: 10.1016/S0925-5273(97)00104-7 · doi:10.1016/S0925-5273(97)00104-7
[29] DOI: 10.1016/S0272-6963(96)00098-8 · doi:10.1016/S0272-6963(96)00098-8
[30] Nise NS, Control Systems Engineering (1995)
[31] DOI: 10.1080/00207548708919822 · doi:10.1080/00207548708919822
[32] DOI: 10.2307/1907849 · Zbl 0046.37804 · doi:10.2307/1907849
[33] DOI: 10.1287/mnsc.35.3.321 · doi:10.1287/mnsc.35.3.321
[34] DOI: 10.1080/00207548208947797 · doi:10.1080/00207548208947797
[35] Tsypkin YZ, Sampling Systems Theory and its ApplicationVol. 2 (1964)
[36] DOI: 10.1287/opre.3.3.272 · doi:10.1287/opre.3.3.272
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.