zbMATH — the first resource for mathematics

What is mathematical fuzzy logic. (English) Zbl 1108.03028
This is an overview paper that was written as a response to the discussion on the question: which of many systems of many-valued logics should be called fuzzy logic? This question has been raised on the international conference “The Logic of Soft Computing IV”, which took place in Ostrava, Czech Republic, in October 2005. The paper comments on the development and present state of fuzzy logic as a branch of mathematical logic. The paper briefly overviews the origin and motivation of fuzzy logic and then presents the main principles of t-norm based fuzzy logic both in its propositional as well as predicate form. Some further generalizations are also outlined.

MSC:
 03B52 Fuzzy logic; logic of vagueness
Keywords:
fuzzy logic; triangular norms; survey
Full Text:
References:
 [1] Alsina, C.; Trillas, E.; Valverde, L., On non-distributive logical connectives for fuzzy sets theory, Busefal, 3, 8-29, (1980) [2] Baaz, M., Infinite-valued Gödel logics with 0-1-projections and relativizations, (), 23-33 · Zbl 0862.03015 [3] F. Cicalese, D. Mundici, Recent developments of feedback coding and its relations with many-valued logic, 2005, preprint. · Zbl 1319.03040 [4] R. Cignoli, F. Esteva, L. Godo, C. Noguera, P. Savický, On product logic with truth constants, Draft, 2005. · Zbl 1102.03030 [5] Cignoli, R.; Esteva, F.; Godo, L.; Torrens, A., Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft computing, 4, 106-112, (2000) [6] P. Cintula, P. Hájek, On t-norm based fuzzy predicate logics—a survey, paper in preparation. [7] D. Dubois, Triangular norms for fuzzy sets, Proc. Second International Seminar on Fuzzy Set Theory Linz, 1980, pp. 39-68. [8] Dubois, D.; Prade, H., A theorem on implication functions defined from triangular t-norms, Stochastica, VIII, 267-279, (1984) · Zbl 0581.03016 [9] Esteva, F.; Godo, L., Putting together łukasiewicz and product logic, Mathware and soft comput., 6, 219-234, (1999) · Zbl 0953.03030 [10] Esteva, F.; Godo, L., Monoidal t-norm based logictowards a logic for left-continuous t-norms, Fuzzy sets and systems, 123, 271-288, (2001) · Zbl 0994.03017 [11] Esteva, F.; Godo, L.; Gispert, J.; Montagna, F., On the standard completeness of some axiomatic extensions of the monoidal t-norm logic, Studia logica, 71, 199-226, (2002) · Zbl 1011.03015 [12] Esteva, F.; Godo, L.; Hájek, P.; Montagna, F., Hoops and fuzzy logic, J. logic comput., 13, 532-555, (2003) · Zbl 1039.03016 [13] F. Esteva, L. Godo, P. Hájek, M. Navara, Residuated fuzzy logics with an involutive negation, Archive for Mathematical Logic, vol. 39, 2000, pp. 103-124. · Zbl 0965.03035 [14] F. Esteva, L. Godo, C. Noguera, On rational weak nilpotent minimum logics, Proc. IPMU 2004, Universita Sapienza Perugia, 561-568. · Zbl 1144.03020 [15] Gerla, G., Fuzzy logic—mathematical tool for approximate reasoning, (2001), Kluwer Academic Publishers Dordrecht · Zbl 0976.03026 [16] Giles, R., Lukasiewicz logic and fuzzy theory, Internat. J. man-Mach. stud., 8, 313-327, (1976) · Zbl 0335.02037 [17] Goguen, J.A., The logic of inexact concepts, Synthese, 19, 325-373, (1968-1969) · Zbl 0184.00903 [18] Gottwald, S., Mehrwertige logik, eine einführung in theorie und anwendungen, (1984), Akademie, Verlag Berlin [19] Gottwald, S., A treatise on many-valued logic, (2000), Research Studies Press [20] Gottwald, S.; Hájek, P., Triangular norm based mathematical fuzzy logics, () · Zbl 1078.03020 [21] Hájek, P., Metamathematics of fuzzy logic, (1998), Kluwer Academic Publishers Dordrecht · Zbl 0937.03030 [22] Hájek, P., Fuzzy logics with non-commutative conjunctions, J. logic comput., 13, 469-479, (2003) · Zbl 1036.03018 [23] Hájek, P., Observations on non-commutative fuzzy logics, Soft comput., 8, 28-43, (2003) · Zbl 1075.03009 [24] P. Hájek, One more variety in fuzzy logic: quasihoops, Technical Report 937, Institut of Computer Science Academic Science Prague, 2005. [25] P. Hájek, Fuzzy logic and arithmetical hierarchy – a survey, Soft Comput., 9 (2005) 935-941. · Zbl 1093.03012 [26] P. Hájek, J. Ševčík, On fuzzy predicate calculi with non-commutative conjunction, in: East West Fuzzy Colloquium 2004-Zittau/Görlitz, 2004, pp. 103-110. [27] R. Horčík, Algebraic properties of fuzzy logics, Thesis, Czech Technical University Prague, 2005. [28] S. Jenei, F. Montagna, A proof of standard completeness for Esteva and Godo’s logic MTL, Studia Logica 70, 183-192. · Zbl 0997.03027 [29] Klir, G.J.; Yuan, B., Fuzzy sets and fuzzy logic—theory and applications, (1995), Prentice Hall PTR · Zbl 0915.03001 [30] J.G. Klir, B. Yuan, (Eds.) Fuzzy Sets, Fuzzy Logic and Fuzzy Systems—Selected Papers by Lotfi A. Zadeh, World Scientific, Singapore, 1996. [31] Montagna, F.; Ono, H., Kripke semantics undecidability and standard completeness for esteva and Godo’s logic MTL$$\forall$$, Studia logica, 71, 227-245, (2002) · Zbl 1013.03021 [32] Novák, V., On the syntactico-semantical completeness of first-order fuzzy logic. part I (syntax and semantic), part II (main results), Kybernetika, 26, 47-66, (1990), 134-154 · Zbl 0705.03009 [33] Novák, V.; Perfilieva, I.; Močkoř, J., Mathematical principles of fuzzy logic, (2000), Kluwer Academic Publishers Dordrecht [34] Paris, J., A semantics for fuzzy logic, Soft comput., 1, 143-147, (1997) [35] Paris, J., Semantics for fuzzy logic supporting truth functionality, (), 82-104 · Zbl 1006.03025 [36] Pavelka, J., On fuzzy logic I, II, III, Zeitschr. f. math. logik und grundlagen der math., 25, 45-52, (1979), 119-134, 447-464 · Zbl 0435.03020 [37] W. Pedrycz, Sterowanie i systemy rozmyte Zeszyty naukowe Politechniki Ślaskiej, Ser. Automatyka, Nr. 70, Gliwice, 1983. [38] Prade, H., Unions et intersections d’ensembles flous, Busefal, 3, 58-62, (1980) [39] Turunen, E., Mathematics behind fuzzy logic, physica, (1999), Verlag Wurzburg · Zbl 0940.03029 [40] Zadeh, L., Fuzzy sets. inform. and control, 8, 338-353, (1965) · Zbl 0139.24606 [41] Zadeh, L., Fuzzy logic and its application to approximate reasoning, Inform. process., 74, 591-594, (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.