×

zbMATH — the first resource for mathematics

Recovering a time-dependent coefficient in a parabolic equation from overspecified boundary data using the pseudospectral Legendre method. (English) Zbl 1107.65085
Summary: The aim of this article is to discuss the problem of finding the unknown function \(u(x,t)\) and the time-dependent coefficient \(a(t)\) in a parabolic partial differential equation. The pseudospectral Legendre method is employed to solve this problem. The results of numerical experiments are given.

MSC:
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cannon, J Math Anal Appl 145 pp 470– (1990)
[2] Cannon, J Math Anal Appl 160 pp 572– (1991)
[3] Cannon, J Differential Equations 79 pp 266– (1989)
[4] Cannon, Inverse Problems 7 pp 149– (1991)
[5] Cannon, Int J Engrg Sci 20 pp 779– (1982)
[6] Jones, J Math Mech 11 pp 907– (1962)
[7] Jones, Comm Pure Appl Math 16 pp 33– (1963)
[8] MacBain, SIAM J Appl Math 47 pp 1386– (1987)
[9] MacBain, J Math Phys 27 pp 645– (1986)
[10] Prilepko, J Differential Eq 21 pp 119– (1985)
[11] Rundell, Appl Anal 10 pp 231– (1980)
[12] Yin, Adv Differential Eq 1 pp 1005– (1996)
[13] Azari, Applications and Algorithms 11 pp 181– (2004)
[14] Cannon, Meccanica 27 pp 85– (1992)
[15] Cannon, Numer Methods Partial Differential Eq 6 pp 177– (1990)
[16] Dehghan, Numer Methods Partial Differential Eq 21 pp 611– (2005)
[17] Cannon, Duke Math J 30 pp 313– (1963)
[18] Budak, Soviet Math 8 pp 1026– (1967)
[19] Douglas, J Math Mech 11 pp 919– (1962)
[20] Spectral methods in MATLAB, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[21] Fahroo, J Guid Control Dynam 24 pp 131– (2001)
[22] Fahroo, J Guid Control Dynam 25 pp 160– (2002)
[23] Josselyn, J Guid Control Dynam 26 pp 505– (2003)
[24] , , Exploiting higher-order derivatives in computational optimal control, presented at the IEEE Mediterranean Conf. Control and Automation, Lisbon, Portugal, July, 2002.
[25] Elnagar, IEEE Trans Automat Contr 40 pp 1793– (1995)
[26] , , Introduction, Theory and Applications of Spectral Methods, , , editors, Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984.
[27] , , , Spectral methods in fluid dynamics, Springer-Verlag, New York, 1988. · Zbl 0658.76001 · doi:10.1007/978-3-642-84108-8
[28] Chebyshev and Fourier spectral methods, Dover Publications, Mineola, NY, 2001. · Zbl 0994.65128
[29] Dehghan, Numer Methods Partial Differential Eq 22 pp 220– (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.