zbMATH — the first resource for mathematics

A improved incompressible lattice Boltzmann model for time-independent flows. (English) Zbl 1106.82366
Summary: It is well known that the lattice Boltzmann equation method (LBE) can model the incompressible Navier-Stokes (NS) equations in the limit where density goes to a constant. In a LBE simulation, however, the density cannot be constant because pressure is equal to density times the square of sound speed, hence a compressibility error seems inevitable for the LBE to model incompressible flows. This work uses a modified equilibrium distribution and a modified velocity to construct an LBE which models time-independent (steady) incompressible flows with significantly reduced compressibility error. Computational results in 2D cavity flow and in a 2D flow with an exact solution are reported.

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,Phys. Fluids 6(3):1285 (1994). · Zbl 0826.76069
[2] S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley,J. Comput. Phys. 118:329 (1995). · Zbl 0821.76060
[3] M. B. Reider and J. D. Sterling, Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-Stokes equations,Computers Fluids, to appear (1995). · Zbl 0845.76086
[4] B. H. Elton, Comparisons of lattice Boltzmann methods and a finite-difference method for a two-dimensional viscous Burgers equation, submitted. · Zbl 0924.65082
[5] Y. Qian, D. d’Humières, and P. Lallemand,Europhys. Lett. 17(6):479 (1992). · Zbl 1116.76419
[6] Y. Qian, Ph.D. thesis, Université Pierre et Marie Curie (January 1990).
[7] J. D. Sterling and S. Chen, Stability analysis of the lattice Boltzmann method,J. Comput. Phys., to appear (1995).
[8] P. A. Skordos,Phys. Rev. E 48:6 (1993).
[9] U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivet,Complex Systems 1:649 (1987).
[10] D. d’Humières and P. Lallemand,Complex Systems 1:599 (1987).
[11] L. P. Kadanoff, G. R. McNamara, and G. Zanetti,Complex Systems 1:791 (1987).
[12] F. J. Alexander, H. Chen, S. Chen and G. D. Doolen,Phys. Rev. A 46:1967 (1992).
[13] U. Ghia, K. N. Ghia, and C. Y. Shin,J. Comput. Phys. 48:387 (1982). · Zbl 0511.76031
[14] Y. H. Qian and S. A. Orszag,Europhys. Lett. 21(3):255 (1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.