×

A discontinuous Galerkin method for the Cahn-Hilliard equation. (English) Zbl 1106.65086

Summary: A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn-Hilliard equation. The Cahn-Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite element methods, coupled equations or interpolation functions with a high degree of continuity that have been employed in the literature to treat the fourth-order spatial derivatives.
The variational formulation of the discontinuous Galerkin method, its implementation and numerical examples are presented. In this communication, it is also shown under what conditions the method is stable, and an error estimate in an energy-type norm is presented. The method is evaluated by comparison with a standard finite element treatment in which the Cahn-Hilliard equation is decomposed into two coupled partial differential equations.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35K55 Nonlinear parabolic equations
35Q72 Other PDE from mechanics (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system-I: Interfacial free energy, The Journal of Chemical Physics, 28, 2, 258-267 (1958) · Zbl 1431.35066
[2] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system-III: Nucleation in a 2-component incompressible fluid, The Journal of Chemical Physics, 31, 3, 688-699 (1959)
[3] Falk, F., Cahn-Hilliard theory and irreversible thermodynamics, Journal Non-equilibrium Thermodynamics, 17, 1, 53-65 (1992) · Zbl 0774.76088
[4] Dolcetta, I. C.; Vita, S. F.; March, R., Area-preserving curve-shortening flows: From phase separation to image processing, Interfaces and Free Boundaries, 4, 4, 325-343 (2002) · Zbl 1021.35129
[5] Tremaine, S., On the origin of irregular structure in Saturn’s rings, Astronomical Journal, 125, 2, 894-901 (2003)
[6] Yu, H.-C.; Lu, W., Dynamics of the self-assembly of nanovoids and nanobubbles in solids, Acta Materialia, 53, 6, 1799-1807 (2005)
[7] Barrett, J. W.; Blowey, J. F.; Garcke, H., Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM Journal of Numerical Analysis, 37, 1, 286-318 (1999) · Zbl 0947.65109
[8] Feng, X.; Prohl, A., Analysis of a fully-discrete finite element method for the phase field model and approximation of its sharp interface limits, SIAM Journal of Numerical Analysis, 73, 246, 541-567 (2003) · Zbl 1115.76049
[9] Elliott, C. M.; French, D. A.; Milner, F. A., A 2nd-order splitting method for the Cahn-Hilliard equation, Numerische Mathematiek, 54, 5, 575-590 (1989) · Zbl 0668.65097
[10] Du, Q.; Nicolaides, R. A., Numerical analysis of a continuum model of phase transition, SIAM Journal of Numerical Analysis, 28, 5, 1310-1322 (1991) · Zbl 0744.65089
[11] Blowey, J. F.; Elliott, C. M., The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis, European Journal of Applied Mathematics, 3, 147-179 (1992) · Zbl 0810.35158
[12] Bansch, E.; Morin, P.; Nochetto, R. H., A finite element method for surface diffusion: The parametric case, Journal of Computational Physics, 203, 1, 321-343 (2005) · Zbl 1070.65093
[13] Ubachs, R. L.J. M.; Schreurs, P. J.G.; Geers, M. G.D., A nonlocal diffuse interface model for microstructure evolution of tin-lead solder, Journal of the Mechanics and Physics of Solids, 52, 8, 1763-1792 (2004) · Zbl 1062.74515
[14] Elliott, C. M.; Zheng, S., On the Cahn-Hilliard Equation, Archive for Rational Mechanics and Analysis, 96, 4, 339-357 (1986) · Zbl 0624.35048
[15] Elliott, C. M.; French, D. A., A non-conforming finite element method for the two-dimensional Cahn-Hilliard equation, SIAM Journal of Numerical Analysis, 26, 4, 884-903 (1989) · Zbl 0686.65086
[16] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0788.73002
[17] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, (Computing Methods in Applied Science. Computing Methods in Applied Science, Lecture Notes in Physics, vol. 58 (1976), Springer-Verlag: Springer-Verlag Heidelberg)
[18] Arnold, D. A., An interior penalty finite element method with discontinuous elements, SIAM Journal of Numerical Analysis, 19, 4, 742-760 (1982) · Zbl 0482.65060
[19] Nitsche, J. A., Über ein Varitionsprinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind, Abh. Math. Sem. Univ. Hamburg, 36, 9-15 (1971) · Zbl 0229.65079
[20] Wheeler, M. F., Elliptic collocation-finite element method with interior penalties, SIAM Journal of Numerical Analysis, 15, 1, 152-161 (1978) · Zbl 0384.65058
[21] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM Journal of Numerical Analysis, 39, 5, 1749-1779 (2002) · Zbl 1008.65080
[22] Engel, G.; Garikipati, K.; Hughes, T. J.R.; Larson, M. G.; Mazzei, L.; Taylor, R. L., Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Computer Methods in Applied Mechanics and Engineering, 191, 34, 3669-3750 (2002) · Zbl 1086.74038
[23] Wells, G. N.; Garikipati, K.; Molari, L., A discontinuous Galerkin formulation for a strain gradient-dependent continuum model, Computer Methods in Applied Mechanics and Engineering, 193, 33-35, 3633-3645 (2004) · Zbl 1068.74084
[24] Molari, L.; Wells, G. N.; Garikipati, K.; Ubertini, F., A discontinuous Galerkin method for strain gradient-dependent damage: Study of interpolations and convergence, Computer Methods in Applied Mechanics and Engineering, 195, 13-16, 1480-1498 (2006) · Zbl 1116.74065
[25] Cahn, J. W., On spinodal decomposition, Acta Metallurgica, 9, 795-801 (1961)
[26] Gurtin, M. E., Generlized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92, 178-192 (1996) · Zbl 0885.35121
[27] Brenner, S. C.; Sung, L. Y., \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, Journal of Scientific Computing, 22-23, 1-3, 83-118 (2005) · Zbl 1071.65151
[28] Brenner, S. C.; Sung, L. Y., Multigrid algorithms for \(C^0\) interior penalty methods, SIAM Journal of Numerical Analysis, 44, 1, 199-223 (2006) · Zbl 1114.65151
[29] Copetti, M. I.M.; Elliot, C. M., Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numerische Mathematiek, 63, 1, 39-65 (1992) · Zbl 0762.65074
[30] Barrett, J. W.; Blowey, J. F., An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numerische Mathematiek, 72, 1, 1-20 (1995) · Zbl 0851.65070
[31] Elliott, C. M.; Garcke, H., On the Cahn-Hilliard equation with degenerate mobility, SIAM Journal on Mathematical Analysis, 27, 2, 404-423 (1996) · Zbl 0856.35071
[32] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer: Springer New York · Zbl 0804.65101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.