×

Blocked regular fractional factorial designs with minimum aberration. (English) Zbl 1106.62087

Summary: This paper considers the construction of minimum aberration (MA) blocked factorial designs. Based on coding theory, the concept of minimum moment aberration due to H. Xu [Stat. Sin. 13, 691–708 (2003; Zbl 1028.62063)] for unblocked designs is extended to blocked designs. The coding theory approach studies designs in a row-wise fashion and therefore links blocked designs with nonregular and supersaturated designs. A lower bound on blocked wordlength patterns is established. It is shown that a blocked design has MA if it originates from an unblocked MA design and achieves the lower bound.
It is also shown that a regular design can be partitioned into maximal blocks if and only if it contains a row without zeros. Sufficient conditions are given for constructing MA blocked designs from unblocked MA designs. The theory is then applied to construct MA blocked designs for all 32 runs, 64 runs up to 32 factors, and all 81 runs with respect to four combined wordlength patterns.

MSC:

62K15 Factorial statistical designs
94B05 Linear codes (general theory)
62K05 Optimal statistical designs

Citations:

Zbl 1028.62063
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Box, G. E. P. and Hunter, J. S. (1961). The \(2^k-p\) fractional factorial designs. I, II. Technometrics 3 311–351, 449–458., Mathematical Reviews (MathSciNet): · Zbl 0100.14406 · doi:10.2307/1266725
[2] Bulutoglu, D. A. and Cheng, C.-S. (2004). Construction of \(E(s^2)\)-optimal supersaturated designs. Ann. Statist. 32 1662–1678. · Zbl 1105.62362 · doi:10.1214/009053604000000472
[3] Butler, N. A. (2003). Some theory for constructing minimum aberration fractional factorial designs. Biometrika 90 233–238. · Zbl 1034.62067 · doi:10.1093/biomet/90.1.233
[4] Butler, N. A., Mead, R., Eskridge, K. M. and Gilmour, S. G. (2001). A general method of constructing \(E(s^ 2)\)-optimal supersaturated designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 621–632. JSTOR: · Zbl 1040.62064 · doi:10.1111/1467-9868.00303
[5] Chen, H. and Cheng, C.-S. (1999). Theory of optimal blocking of \(2^n-m\) designs. Ann. Statist. 27 1948–1973. · Zbl 0961.62066 · doi:10.1214/aos/1017939246
[6] Chen, J. (1992). Some results on \(2^n-k\) fractional factorial designs and search for minimum aberration designs. Ann. Statist. 20 2124–2141. · Zbl 0770.62063 · doi:10.1214/aos/1176348907
[7] Chen, J., Sun, D. X. and Wu, C. F. J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs. Internat. Statist. Rev. 61 131–145. · Zbl 0768.62058 · doi:10.2307/1403599
[8] Chen, J. and Wu, C.-F. J. (1991). Some results on \(s^n-k\) fractional factorial designs with minimum aberration or optimal moments. Ann. Statist. 19 1028–1041. · Zbl 0725.62068 · doi:10.1214/aos/1176348135
[9] Cheng, C.-S. and Mukerjee, R. (2001). Blocked regular fractional factorial designs with maximum estimation capacity. Ann. Statist. 29 530–548. · Zbl 1041.62064 · doi:10.1214/aos/1009210551
[10] Cheng, S.-W. and Wu, C.-F. J. (2002). Choice of optimal blocking schemes in two-level and three-level designs. Technometrics 44 269–277. JSTOR: · doi:10.1198/004017002188618455
[11] Draper, N. R. and Mitchell, T. J. (1967). The construction of saturated \(2^k-p_R\) designs. Ann. Math. Statist. 38 1110–1126. · Zbl 0158.37404 · doi:10.1214/aoms/1177698780
[12] Fries, A. and Hunter, W. G. (1980). Minimum aberration \(2^k-p\) designs. Technometrics 22 601–608. JSTOR: · Zbl 0453.62063 · doi:10.2307/1268198
[13] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays : Theory and Applications . Springer, New York. · Zbl 0935.05001
[14] Mukerjee, R. and Wu, C. F. J. (1995). On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann. Statist. 23 2102–2115. · Zbl 0897.62083 · doi:10.1214/aos/1034713649
[15] Mukerjee, R. and Wu, C. F. J. (1999). Blocking in regular fractional factorials: A projective geometric approach. Ann. Statist. 27 1256–1271. · Zbl 0959.62066 · doi:10.1214/aos/1017938925
[16] Pless, V. (1963). Power moment identities on weight distributions in error correcting codes. Inform. and Control 6 147–152. · Zbl 0149.37905 · doi:10.1016/S0019-9958(63)90189-X
[17] Sitter, R. R., Chen. J. and Feder, M. (1997). Fractional resolution and minimum aberration in blocked \(2^n-k\) designs. Technometrics 39 382–390. JSTOR: · Zbl 0913.62073 · doi:10.2307/1271502
[18] Suen, C., Chen, H. and Wu, C. F. J. (1997). Some identities on \(q^n-m\) designs with application to minimum aberration designs. Ann. Statist. 25 1176–1188. · Zbl 0898.62095 · doi:10.1214/aos/1069362743
[19] Sun, D. X., Wu, C. F. J. and Chen, Y. (1997). Optimal blocking schemes for \(2^n\) and \(2^n-p\) designs. Technometrics 39 298–307. JSTOR: · Zbl 0891.62055 · doi:10.2307/1271134
[20] van Lint, J. H. (1999). Introduction to Coding Theory , 3rd ed. Springer, New York. · Zbl 0936.94014
[21] Xu, H. (2001). Optimal factor assignment for asymmetrical fractional factorial designs: Theory and applications. Ph.D. dissertation, Univ. Michigan.
[22] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statist. Sinica 13 691–708. · Zbl 1028.62063
[23] Xu, H. (2005). A catalogue of three-level regular fractional factorial designs. Metrika 62 259–281. · Zbl 1078.62084 · doi:10.1007/s00184-005-0408-x
[24] Xu, H. and Lau, S. (2006). Minimum aberration blocking schemes for two- and three-level fractional factorial designs. J. Statist. Plann. Inference 136 4088–4118. · Zbl 1104.62090 · doi:10.1016/j.jspi.2005.05.002
[25] Zhang, R. and Park, D. (2000). Optimal blocking of two-level fractional factorial designs. J. Statist. Plann. Inference 91 107–121. · Zbl 0958.62072 · doi:10.1016/S0378-3758(00)00133-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.