×

zbMATH — the first resource for mathematics

Common fixed point and invariant approximation results for noncommuting generalized \((f,g)\)-nonexpansive maps. (English) Zbl 1106.47048
Some common fixed point theorems for generalized \((f,g)\)-nonexpansive \(R\)-subweakly commuting maps are established. As applications, some results on the existence of common fixed points from the set of best approximations are obtained.

MSC:
47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDF BibTeX Cite
Full Text: DOI
References:
[1] Al-Thagafi, M.A., Common fixed points and best approximation, J. approx. theory, 85, 318-323, (1996) · Zbl 0858.41022
[2] Baskaran, E.; Subrahmanyam, L.V., Common fixed points in closed balls, Atti. sem. mat. fis. univ. modena, 36, 1-5, (1988) · Zbl 0656.54031
[3] Dotson, W.J., Fixed point theorems for nonexpansive mappings on star-shaped subsets of Banach spaces, J. London math. soc., 4, 408-410, (1972) · Zbl 0229.47047
[4] Habiniak, L., Fixed point theorems and invariant approximation, J. approx. theory, 56, 241-244, (1989) · Zbl 0673.41037
[5] Hicks, T.L.; Humphries, M.D., A note on fixed point theorems, J. approx. theory, 34, 221-225, (1982) · Zbl 0483.47039
[6] Hussain, N.; Khan, A.R., Common fixed point results in best approximation theory, Appl. math. lett., 16, 575-580, (2003) · Zbl 1063.47055
[7] N. Hussain, D. O’Regan, R.P. Agarwal, Common fixed point and invariant approximation results on non-star-shaped domain, Georgian Math. J., in press
[8] Jungck, G., Common fixed points for commuting and compatible maps on compacta, Proc. amer. math. soc., 103, 977-983, (1988) · Zbl 0661.54043
[9] Jungck, G.; Sessa, S., Fixed point theorems in best approximation theory, Math. japon., 42, 249-252, (1995) · Zbl 0834.54026
[10] Meinardus, G., Invarianze bei linearen approximationen, Arch. ration. mech. anal., 14, 301-303, (1963) · Zbl 0122.30801
[11] Pathak, H.K.; Khan, M.S., Fixed and coincidence points of hybrid mappings, Arch. math. (Brno), 38, 201-208, (2002) · Zbl 1068.47073
[12] Sahab, S.A.; Khan, M.S.; Sessa, S., A result in best approximation theory, J. approx. theory, 55, 349-351, (1988) · Zbl 0676.41031
[13] Sessa, S., On a weak commutative condition of mappings in fixed point considerations, Publ. inst. math. (beograd) (N.S.), 32, 46, 149-153, (1982) · Zbl 0523.54030
[14] Shahzad, N., A result on best approximation, Tamkang J. math., Corrections, 30, 165-226, (1999)
[15] Shahzad, N., On R-subcommuting maps and best approximations in Banach spaces, Tamkang J. math., 32, 51-53, (2001) · Zbl 0978.41020
[16] Shahzad, N., Invariant approximations and R-subweakly commuting maps, J. math. anal. appl., 257, 39-45, (2001) · Zbl 0989.47047
[17] Shahzad, N., Generalized I-nonexpansive maps and best approximations in Banach spaces, Demonstratio math., 37, 597-600, (2004) · Zbl 1095.41017
[18] Shahzad, N., Invariant approximations, generalized I-contractions, and R-subweakly commuting maps, Fixed point theory appl., 1, 79-86, (2005) · Zbl 1083.54540
[19] Singh, S.P., An application of fixed point theorem to approximation theory, J. approx. theory, 25, 89-90, (1979) · Zbl 0399.41032
[20] Subrahmanyam, P.V., An application of a fixed point theorem to best approximation, J. approx. theory, 20, 165-172, (1977) · Zbl 0349.41013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.