×

Sequential confidence regions for maximum likelihood estimates. (English) Zbl 1105.62369

Summary: The goal of this paper is to develop a general framework for constructing sequential fixed size confidence regions based on maximum likelihood estimates. Asymptotic properties of the sequential procedure for setting up the confidence regions are analyzed under very broad assumptions on the underlying parametric model. It is shown that the proposed sequential procedure is asymptotically optimal in the sense that it approximates the optimal fixed-sample size procedure. It is further shown that the “cost of ignorance” associated with the sequential procedure is bounded. Applications are made to estimation problems arising in prospective and retrospective studies.

MSC:

62L12 Sequential estimation
62F25 Parametric tolerance and confidence regions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anscombe, F. J. (1952). Large sample theory of sequential estimation. Proc. Cambridge Philos. Soc. 48 600-607. · Zbl 0047.13401 · doi:10.1017/S0305004100076386
[2] Baum, L. E. and Katz, M. (1965). Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 108-123. · Zbl 0142.14802 · doi:10.2307/1994170
[3] Bellman, R. (1970). Introduction to Matrix Analysis. McGraw-Hill, New York. · Zbl 0216.06101
[4] Berk, R. H. (1972). Consistency and asymptotic normality of maximum likelihood estimates for exponential models. Ann. Math. Statist. 43 193-204. · Zbl 0253.62005 · doi:10.1214/aoms/1177692713
[5] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[6] Chang, Y. I. and Martinsek, A. (1992). Fixed size confidence regions for parameters of a logistic regression model. Ann. Statist. 20 1953-1969. · Zbl 0765.62075 · doi:10.1214/aos/1176348897
[7] Chang, Y. I. (1995). Estimation in some binary regression models with prescribed accuracy. J. Statist. Plann. Inference 44 313-325. · Zbl 0811.62076 · doi:10.1016/0378-3758(94)00054-Y
[8] Chow, Y. S. and Robbins, H. (1965). On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Statist. 36 457-462. · Zbl 0142.15601 · doi:10.1214/aoms/1177700156
[9] Chow, Y. S. and Teicher, H. (1988). Probability Theory. Springer, New York. · Zbl 0652.60001
[10] Church, J. D. and Cobb, E. B. (1973). On the equivalence of the Spearman-Karber and maximum likelihood estimates of the mean. J. Amer. Statist. Assoc. 68 201-202. · Zbl 0259.62027 · doi:10.2307/2284170
[11] Cram er, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press. · Zbl 0063.01014
[12] Fahrmeir, L. and Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 342-368. [Correction note (1986) Ann. Statist. 14 1643.] · Zbl 0594.62058 · doi:10.1214/aos/1176346597
[13] Fahrmeir, L. (1987). Asymptotictesting theory for generalized linear models. Statistics 18 65-76. · Zbl 0618.62031 · doi:10.1080/02331888708801992
[14] Feller, W. (1966). An Introduction to Probability Theory and Its Applications II. Wiley, New York. · Zbl 0138.10207
[15] Gleser, L. (1965). On the asymptotic theory of fixed size sequential confidence bounds for linear regression parameters. Ann. Math. Statist. 36 463-467. [Correction note (1966) Ann. Math. Statist. 37 1053-1055.] · Zbl 0136.39501 · doi:10.1214/aoms/1177700157
[16] Gleser, L. (1969). On limiting distribution for sums of a random number of independent random vectors. Ann. Math. Statist. 40 935-941. · Zbl 0181.45001 · doi:10.1214/aoms/1177697598
[17] Govindarajulu, Z. (1987). The Sequential Statistical Analysis of Hypothesis Testing, Point and Interval Estimation, and Decision Theory. American Sciences Press, Columbus, OH. · Zbl 0601.62099
[18] Govindarajulu, Z. (1988). Statistical Analysis of Bioassay. Karger, New York.
[19] Govindarajulu, Z. and Nanthakumar, A. (2000). Sequential estimation of the the mean of logistic response function. Statistics 33 309-332. · Zbl 1010.62073 · doi:10.1080/02331880008802698
[20] Grambsch, P. (1983). Sequential sampling based on the observed Fisher information to guarantee the accuracy of the maximum likelihood estimator. Ann. Statist. 11 68-77. · Zbl 0514.62088 · doi:10.1214/aos/1176346057
[21] Grambsch, P. (1989). Sequential maximum likelihood estimation with applications to logistic regression in case-control studies. J. Statist. Plann. Inference 22 355-369. · Zbl 0671.62080 · doi:10.1016/0378-3758(89)90100-6
[22] Haberman, S. J. (1977). Maximum likelihood estimates in exponential response models. Ann. Statist. 5 815-841. · Zbl 0368.62019 · doi:10.1214/aos/1176343941
[23] Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge Univ. Press. · Zbl 0576.15001
[24] Hsu, P. L. and Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. U.S.A. 33 25-31. JSTOR: · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[25] Ibragimov, I. A. and Hasminskii, R. Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, New York. · Zbl 0705.62039
[26] Kaufmann, H. (1987). On the strong law of large numbers for multivariate martingales. Stochastic Process Appl. 26 73-85. · Zbl 0632.60040 · doi:10.1016/0304-4149(87)90051-2
[27] Lai, T. L. and Siegmund, D. (1977). A nonlinear renewal theory with applications to sequential analysis, I. Ann. Statist. 5 946-954. · Zbl 0378.62069 · doi:10.1214/aos/1176343950
[28] Lai, T. L. and Siegmund, D. (1979). A nonlinear renewal theory with applications to sequential analysis, II. Ann. Statist. 7 60-76. · Zbl 0409.62074 · doi:10.1214/aos/1176344555
[29] Lai, T. L. and Siegmund, D. (1983). Fixed accuracy estimation of an autoregressive parameter. Ann. Statist. 11 478-485. · Zbl 0519.62076 · doi:10.1214/aos/1176346154
[30] Lai, T. L. (1996). On uniform integrability and asymptotically risk-efficient sequential estimation. Sequential Anal. 15 237-251. · Zbl 0876.62069 · doi:10.1080/07474949608836362
[31] Miller, R. G. (1973). Nonparametricestimators of the mean tolerance in bioassay. Biometrika 60 535-542. JSTOR: · Zbl 0271.62046 · doi:10.1093/biomet/60.3.535
[32] Nanthakumar, A. and Govindarajulu, Z. (1994). Risk-efficient estimation of the mean of the logisticresponse function using the Spearman-Karber estimator. Statist. Sinica 4 305- 324. · Zbl 0823.62092
[33] Nanthakumar, A. and Govindarajulu, Z. (1999). Fixed-width estimation of the mean of logistic response function using the Spearman-Karber estimator. Biomedical J. 4 445-456. · Zbl 0932.62093 · doi:10.1002/(SICI)1521-4036(199907)41:4<445::AID-BIMJ445>3.0.CO;2-A
[34] Nelder, J. A. and Weddernburn, R. W. M. (1972). Generalized linear models. J. Roy. Statist. Soc. Ser. A 135 370-384.
[35] Roy, S. N. (1957). Some Aspects of Multivariate Analysis. Wiley, New York. · Zbl 0083.19305
[36] Siegmund, D. (1985). Sequential Analysis. Springer, New York. · Zbl 0573.62071
[37] Siegmund, D. and Sellke, T. (1983). Sequential analysis of the proportional hazards model. Biometrika 70 315-326. JSTOR: · Zbl 0528.62068 · doi:10.1093/biomet/70.2.315
[38] Srivastava, M. S. (1971). On fixed-width confidence bounds for regression parameters. Ann. Math. Statist. 42 1403-1411. · Zbl 0224.62034 · doi:10.1214/aoms/1177693251
[39] Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Statist. 16 243-258. · Zbl 0060.30403 · doi:10.1214/aoms/1177731088
[40] Sweeting, T. J. (1980). Uniform asymptoticnormality of the maximum likelihood estimator. Ann. · Zbl 0447.62041 · doi:10.1214/aos/1176345208
[41] Statist. 8 1375-1381. [Correction note (1982). Ann. Statist. 10 320-321.] · Zbl 0523.62030 · doi:10.1214/aos/1176345717
[42] Vexler, A. A. and Konev, V. V. (1995). On the mean number of observations under guaranteed estimation of an autoregression parameter. Automation Remote Control 56 844-850. · Zbl 0925.62352
[43] Vexler, A. A. and Dmitrienko, A. A. (1999). Approximations to expected stopping times with applications to sequential estimation. Sequential Anal. 18 165-187. · Zbl 1159.62322 · doi:10.1080/07474949908836430
[44] Weiss, L. (1971). Asymptoticproperties of maximum likelihood estimators in some nonstandard cases. J. Amer. Statist. Assoc. 66 345-350. JSTOR: · Zbl 0223.62037 · doi:10.2307/2283934
[45] Weiss, L. (1973). Asymptoticproperties of maximum likelihood estimators in some nonstandard cases II. J. Amer. Statist. Assoc. 68 428-430. JSTOR: · Zbl 0272.62011 · doi:10.2307/2284091
[46] Woodroofe, M. (1977). Second order approximation to sequential point and interval estimation. Ann. Statist. 5 984-995. · Zbl 0374.62081 · doi:10.1214/aos/1176343953
[47] Woodroofe, M. (1982). Nonlinear Renewal Theory in Sequential Analysis. SIAM, Philadelphia. · Zbl 0487.62062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.