×

zbMATH — the first resource for mathematics

The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. (English) Zbl 1104.82039
Summary: We study linear response theory in the general framework of algebraic quantum statistical mechanics and prove the Green-Kubo formula and the Onsager reciprocity relations for heat fluxes generated by temperature differentials. Our derivation is axiomatic and the key assumptions concern ergodic properties of non-equilibrium steady states.

MSC:
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Araki, H. Relative Hamiltonians for faithful normal states of a von Neumann algebra. Publ. R.I.M.S., Kyoto Univ. 9, 165 (1973) · Zbl 0273.46054
[2] Araki, H., Ho, T.G Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Tr. Mat. Inst. Steklova, 228 Probl. Sovrem. Mat. Fiz., 203, (2000); translation in Proc. Steklov Inst. Math. 228, 191, (2000) · Zbl 1034.82008
[3] Aschbacher W., Pillet C-A. (2003) Non-equilibrium steady states of the XY chain. J. Stat. Phys. 12: 1153 · Zbl 1032.82020
[4] Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A. Topics in non-equilibrium quantum statistical mechanics. To appear in Lecture Notes in Mathematics · Zbl 1126.82032
[5] Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A. Transport properties of ideal Fermi gases (In preparation)
[6] Aizenstadt V.V., Malyshev V.A. (1987) Spin interaction with an ideal Fermi gas. J. Stat. Phys. 48, 51
[7] Botvich D.D., Malyshev V.A. (1978) Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas. Commun. Math. Phys. 61, 209 · Zbl 0392.46039
[8] Bouclet J.M., Germinet F., Klein A., Schenker J.H. (2005) Linear response theory for magnetic Schrödinger operators in disordered media. J. Funct. Anal. 226, 301 · Zbl 1088.82013
[9] Brenig W. (1989) Statistical Theory of Heat. Springer-Verlag, Berlin
[10] Bratteli O., Robinson D.W. (1987) Operator Algebras and Quantum Statistical Mechanics 1. Springer-Verlag, Berlin · Zbl 0905.46046
[11] Bratteli O., Robinson D.W. (1996) Operator Algebras and Quantum Statistical Mechanics 2. Second edition, Springer-Verlag, Berlin · Zbl 0903.46066
[12] Davies E.B. (1974) Markovian master equations. Commun. Math. Phys. 39, 91 · Zbl 0294.60080
[13] De Groot, S.R., Mazur, P. Non-Equilibrium Thermodynamics. Amsterdam: North-Holland 1969 · Zbl 1375.82003
[14] Dereziński J., Jakšić V., Pillet C.-A. (2003) Perturbation theory of W *-dynamics, KMS-states and Liouvilleans. Rev. Math. Phys. 15, 447 · Zbl 1090.46049
[15] Fröhlich J., Merkli M., Ueltschi D. (2004) Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897 · Zbl 1106.82021
[16] Goderis D., Verbeure A., Vets P. (1991) About the exactness of the linear response theory. Commun. Math. Phys. 136, 265 · Zbl 0723.46049
[17] Goderis D., Verbeure A., Vets P. (1989) Theory of quantum fluctuations and the Onsager relations. J. Stat. Phys. 56, 721 · Zbl 0698.60085
[18] Jakšić, V., Ogata, Y., Pillet, C.-A. Linear response theory for thermally driven open quantum systems. Submited · Zbl 1101.82029
[19] Jakšić, V., Ogata, Y., Pillet, C.-A. The Green-Kubo formula for the spin-fermion system. http://hal.ccsd.cnrs.fr/cssd-0009010, 2005 · Zbl 1147.82338
[20] Jakšić, V., Ogata, Y., Pillet, C.-A. In preparation
[21] Jakšić V., Pillet C-A. (2001) On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285 · Zbl 1042.82031
[22] Jakšić V., Pillet C.-A. (2002) Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131 · Zbl 0990.82017
[23] Jakšić V., Pillet C.-A. (2002) Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787 · Zbl 1025.82011
[24] Kubo R., Toda M., Hashitsune N. (1991) Statistical Physics II. Second edition, Springer-Verlag, Berlin
[25] Lebowitz J., Spohn H. (1978) Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 39, 109
[26] Rey-Bellet, L. Open Classical Systems. To appear in Lecture Notes in Mathematics · Zbl 1188.82038
[27] Robinson D.W. (1973) Return to equilibrium. Commun. Math. Phys. 31, 171 · Zbl 0257.46091
[28] Ruelle D. (2000) Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57 · Zbl 0988.82032
[29] Ruelle D. (2001) Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3 · Zbl 1051.82003
[30] Ruelle, D. Topics in quantum statistical mechanics and operator algebras. Preprint, http://www. ma.vtexas.edu/mp_arc/index-01.html mp-arc 01-257, 2001
[31] Ruelle D. (1999) Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393 · Zbl 0934.37010
[32] Ruelle D. (1997) Differentiation of SRB states. Commun. Math. Phys. 187, 227 · Zbl 0895.58045
[33] Tasaki, S., Matsui, T. Fluctuation theorem, nonequilibrium steady states and ensembles of a class of large quantum systems. In: Fundamental Aspects of Quantum Physics (Tokyo, 2001). QP–PQ: Quantum Probab. White Noise Anal., 17. River Edge NJ: World Sci., 2003, p. 100 · Zbl 1057.82006
[34] Zubarev, D.N. Nonequilibrium statistical thermodynamics. NY: Consultant Bureau 1974
[35] Zubarev D.N., Morozov V.G., Röpke G. (1996) Statistical Mechanics of Nonequilibrium Processes I. Academie Verlag, Berlin · Zbl 0890.00008
[36] Zubarev D.N., Morozov V.G., Röpke G. (1997) Statistical Mechanics of Nonequilibrium Processes II. Academie Verlag, Berlin · Zbl 0890.00009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.