×

zbMATH — the first resource for mathematics

First-order regularity of convex functions on Carnot groups. (English) Zbl 1103.43005
It is shown that \(h\)-convex functions on Carnot groups of step two are locally Lipschitz continuous with respect to any intrinsic metric. Provided that an additional measurability condition holds, the local Lipschitz continuity of \(h\)-convex functions on arbitrary Carnot groups is proved.

MSC:
43A80 Analysis on other specific Lie groups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ambrosio, L. and Magnani, V. Weak differentiability of BV functions on stratified groups,Math.Z. 245, 123–153, (2003). · Zbl 1048.49030 · doi:10.1007/s00209-003-0530-2
[2] Balogh, Z.M. and Rickly, M. Regularity of convex functions on Heisenberg groups,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2, 847–868, (2003). · Zbl 1121.43007
[3] Björn, J. Boundary continuity for quasiminimizers on metric spaces,Illinois J. Math. 46, 383–403, (2002). · Zbl 1026.49029
[4] Danielli, D. Regularity at the boundary for solutions of nonlinear subelliptic equations,Indiana Univ. Math. J. 44, 269–286, (1995). · Zbl 0828.35022 · doi:10.1512/iumj.1995.44.1988
[5] Danielli, D., Garofalo, N., and Nhieu, D.-M. Notions of convexity in Carnot groups.Comm. Anal. Geom. 11, 263–341, (2003). · Zbl 1077.22007 · doi:10.4310/CAG.2003.v11.n2.a5
[6] Danielli, D., Garofalo, N., Nhieu, D.-M., and Tournier, F. The Theorem of Busemann-Feller-Alexandrov in Carnot groups,Comm. Anal. Geom. 12, 853–886, (2004). · Zbl 1071.22004 · doi:10.4310/CAG.2004.v12.n4.a5
[7] Derridj, M. Sur un théorème de traces,Ann. Inst. Fourier (Grenoble) 22, 73–83, (1972). · Zbl 0231.46076 · doi:10.5802/aif.413
[8] Evans, L. and Gariepy, R.Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, (1992). · Zbl 0804.28001
[9] Federer, H.Geometric Measure Theory, Reprint of the 1969 Edition, Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, (1996). · Zbl 0874.49001
[10] Folland, G.B. and Stein, E.M. Hardy spaces on homogeneous groups,Math. Notes Princeton 28, Princeton University Press, NJ, (1982). · Zbl 0508.42025
[11] Garofalo, N. and Tournier, F. New properties of convex functions in the Heisenberg group,Trans. Amer. Math. Soc. 358, 2011–2055,(2006). · Zbl 1102.35033 · doi:10.1090/S0002-9947-05-04016-X
[12] Gutiérrez, C.E. and Montanari, A. Maximum and comparison principles for convex functions on the Heisenberg group,Comm. Partial Differential Equations 29, 1305–1334, (2004). · Zbl 1056.35033 · doi:10.1081/PDE-200037752
[13] Gutiérrez, C.E. and Montanari, A. On the second order derivatives of convex functions on the Heisenberg group,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3, 349–366, (2004). · Zbl 1170.35352
[14] Lu, G., Manfredi, J., and Stroffolini, B. Convex functions on the Heisenberg group,Calc. Var. Partial Differential Equations 19, 1–22, (2004). · Zbl 1072.49019 · doi:10.1007/s00526-003-0190-4
[15] Magnani, V. Lipschitz continuity, Aleksandrov Theorem and characterizations for H-convex functions,Math. Ann. 334, 199–233, (2006). · Zbl 1115.49004 · doi:10.1007/s00208-005-0717-4
[16] Montefalcone, F. Some relations among volume, intrinsic perimeter and one-dimensional restrictions of BV functions in Carnot groups,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4, 79–128, (2005). · Zbl 1150.49022
[17] Monti, R. and Rickly, M. Geodetically convex sets in the Heisenberg group,J. Convex Anal. 12, 187–196, (2005). · Zbl 1077.53030
[18] Rickly, M. On questions of existence and regularity related to notions of convexity in Carnot groups, PhD Thesis, University of Bern, (2005).
[19] Varadarajan, V.S.Lie Groups, Lie Algebras, and their Representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, NJ, (1974). · Zbl 0371.22001
[20] Varopoulos, N. Th., Saloff-Coste, L., and Coulhon, T. Analysis and geometry on groups,Cambridge Tracts in Math. 100, Cambridge University Press, (1992). · Zbl 0813.22003
[21] Wang, C. Viscosity convex functions on Carnot groups,Proc. Amer. Math. Soc. 133, 1247–1253, (2005). · Zbl 1057.22012 · doi:10.1090/S0002-9939-04-07836-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.