×

Crystalline-amorphous interface packings for disks and spheres. (English) Zbl 1102.82342

Summary: We have employed a computer simulation method for uniaxial compression to create random, but spatially inhomogeneous, disk and sphere packings in contact with exposed faces of their own close-packed crystals. The disk calculations involved 7920 movable particles, while the sphere cases utilized over 4000 particles. Rates of compression to the jamming limit were varied over two orders of magnitude, and in three dimensions this produced a clear distinction between the cases of jamming against (001) and (111) faces of the sphere crystal. Specifically, epitaxial order next to the (001) face was markedly enhanced by slowing the compression; for the (111) face the epitaxial order was quite insensitive to the compression rate.

MSC:

82D25 Statistical mechanics of crystals
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1953), Chapters 5 and 6. · Zbl 0063.00782
[2] H. L. Frisch,Adv. Chem. Phys. 6:229 (1964).
[3] K. Huang and C. N. Yang,Phys. Rev,105:767 (1957). · Zbl 0077.20905
[4] T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106:1135 (1957). · Zbl 0077.45003
[5] B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31:459 (1959).
[6] L. V. Woodcock,Ann. N.Y. Acad. Sci. 371:274 (1981).
[7] B. D. Lubachevsky and F. H. Stillinger,J. Stat. Phys. 60:561 (1990). · Zbl 1086.82569
[8] B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson,J. Stat. Phys. 64:501 (1991). · Zbl 0935.82521
[9] P. H. Gaskell, inGlassy Metals, H. Beck ad H.-J. Güntherodt, eds. (Springer, Berlin, 1983), Vol. II, pp. 5-49.
[10] C. H. Bennett,J. Appl. Phys. 43:2727 (1972).
[11] J. L. Finney,Nature 266:309 (1977).
[12] D. J. Adams and A. J. Matheson,J. Chem. Phys. 56:1989 (1972).
[13] F. Delyon and Y. E. Lévy,J. Phys. A 23:4471 (1990).
[14] E. L. Hinrichsen, J. Feder, and T. Jossang,Phys. Rev. A 41:4199 (1990).
[15] A. Pavlovitch, R. Jullien, and P. Meakin,Physica A 176:206 (1991).
[16] J. S. Rowlinson and B. Widom,Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982), p. 31.
[17] W. M. Visscher and M. Bolsterli,Nature 239:504 (1972).
[18] N. W. Ashcroft and N. D. Mermin,Solid State Physics (Saunders, Philadelphia, 1976). · Zbl 1107.82300
[19] J. G. Berryman,Phys. Rev. A 27:1053 (1983).
[20] J. Tobochnik and P. M. Chapin,J. Chem. Phys. 88:5824 (1988).
[21] J. Nezbeda and W. R. Smith,Mol. Phys. 75:789 (1992).
[22] W. G. Pfann,Zone Melting (Wiley, New York, 1958).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.