×

zbMATH — the first resource for mathematics

Generalized potentials and robust sets of equilibria. (English) Zbl 1100.91004
Summary: This paper introduces generalized potential functions of complete information games and studies the robustness of sets of equilibria to incomplete information. A set of equilibria of a complete information game is robust if every incomplete information game where payoffs are almost always given by the complete information game has an equilibrium which generates behavior close to some equilibrium in the set. This paper provides sufficient conditions for the robustness of sets of equilibria in terms of argmax sets of generalized potential functions. These sufficient conditions unify and generalize existing sufficient conditions. Our generalization of potential games is useful in other game theoretic problems where potential methods have been applied.

MSC:
91A10 Noncooperative games
90C47 Minimax problems in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Billingsley, P., Convergence of probability measures, (1968), Wiley New York · Zbl 0172.21201
[2] Blume, L., The statistical mechanics of strategic interaction, Games econ. behav., 5, 387-424, (1993) · Zbl 0797.90123
[3] Blume, L., Population games, (), 425-460
[4] Carlsson, H.; van Damme, E., Global games and equilibrium selection, Econometrica, 61, 989-1018, (1993) · Zbl 0794.90083
[5] Dempster, A.P., Upper and lower probabilities induced by a multivalued mapping, Ann. math. statist., 38, 325-339, (1967) · Zbl 0168.17501
[6] Dempster, A.P., A generalization of Bayesian inference, J. roy. statistical society B, 38, 205-247, (1968) · Zbl 0169.21301
[7] Ellison, G., Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution, Rev. econ. stud., 67, 17-45, (2000) · Zbl 0956.91027
[8] Frankel, D.; Morris, S.; Pauzner, A., Equilibrium selection in global games with strategic complementarities, J. econ. theory, 108, 1-44, (2003) · Zbl 1044.91005
[9] Hart, S.; Mas-Colell, A., Potential, value, and consistency, Econometrica, 57, 589-614, (1989) · Zbl 0675.90103
[10] Hofbauer, J.; Sorger, G., Perfect foresight and equilibrium selection in symmetric potential games, J. econ. theory, 85, 1-23, (1999) · Zbl 0922.90146
[11] Hofbauer, J.; Sorger, G., A differential game approach to evolutionary equilibrium selection, Int. game theory rev., 4, 17-31, (2002) · Zbl 1017.91009
[12] Kajii, A.; Morris, S., The robustness of equilibria to incomplete information, Econometrica, 65, 1283-1309, (1997) · Zbl 0887.90186
[13] A. Kajii, S. Morris, Refinements and higher order beliefs: a unified survey, Northwestern Math Center Discussion Paper No. 1197, 1997 (available at http://ssrn.com/abstract=283477).
[14] Kohlberg, E.; Mertens, J.-F., On the strategic stability of equilibria, Econometrica, 54, 1003-1037, (1986) · Zbl 0616.90103
[15] Kukushkin, N.S., Potential gamesa purely ordinal approach, Econ. letters, 62, 279-283, (1999) · Zbl 0983.91004
[16] Maruta, T., On the relationship between risk-dominance and stochastic stability, Games econ. behav., 19, 221-234, (1997)
[17] Matsui, A.; Matsuyama, K., An approach to equilibrium selection, J. econ. theory, 57, 415-443, (1995) · Zbl 0835.90121
[18] Monderer, D.; Shapley, L.S., Potential games, Games econ. behav., 14, 124-143, (1996) · Zbl 0862.90137
[19] Morris, S.; Rob, R.; Shin, H.S., p-dominance and belief potential, Econometrica, 63, 145-157, (1995) · Zbl 0827.90138
[20] Morris, S.; Ui, T., Best response equivalence, Games econ. behav., 49, 260-287, (2004) · Zbl 1102.91006
[21] Okada, A., On stability of perfect equilibrium points, Int. J. game theory, 10, 67-73, (1981) · Zbl 0474.90087
[22] Oppenheim, N., Urban travel demand modelingfrom individual choices to general equilibrium, (1995), Wiley New York
[23] Oyama, D., \(p\)-dominance and equilibrium selection under perfect foresight dynamics, J. econ. theory, 107, 288-310, (2002) · Zbl 1033.91002
[24] D. Oyama, S. Takahashi, J. Hofbauer, Monotone methods for equilibrium selection under perfect foresight dynamics, Working Paper, University of Tokyo, 2003 (available at http://www.e.u-tokyo.ac.jp/\(\sim\)oyama/papers/supmod.html).
[25] Rockafellar, R.T., Convex analysis, (1970), Princeton University Press New Jersey · Zbl 0229.90020
[26] Rosenthal, R.W., A class of games possessing pure-strategy Nash equilibria, Int. J. game theory, 2, 65-67, (1973) · Zbl 0259.90059
[27] Rubinstein, A., The electronic mail gamestrategic behavior under almost common knowledge, Amer. econ. rev., 79, 385-391, (1989)
[28] Selten, R., Reexamination of the perfectness concept for equilibrium points in extensive games, Int. J. game theory, 4, 25-55, (1975) · Zbl 0312.90072
[29] Shafer, G., A mathematical theory of evidence, (1976), Princeton University Press New Jersey · Zbl 0359.62002
[30] Strassen, V., Messfehler und information, Z. wahrscheinlichkeitstheorie verw. gebiete, 2, 273-305, (1964) · Zbl 0131.36402
[31] O. Tercieux, The robustness of equilibria to incomplete information: a note, Working Paper, EUREQua, 2003. · Zbl 1177.91019
[32] T. Ui, Quantal responses, potentials, and stochastic stability of equilibria, Ph.D. Thesis, Stanford University, June 1997.
[33] Ui, T., A Shapley value representation of potential games, Games econ. behav., 31, 121-135, (2000) · Zbl 0966.91005
[34] Ui, T., Robust equilibria of potential games, Econometrica, 69, 1373-1380, (2001) · Zbl 1041.91006
[35] Voorneveld, M., Best-response potential games, Econ. letters, 66, 289-295, (2000) · Zbl 0951.91008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.