zbMATH — the first resource for mathematics

On stages and consistency checks in stochastic programming. (English) Zbl 1099.90035
Summary: This paper gives a rigorous definition of a stage, usable for dynamic stochastic programs with both recourse and probabilistic constraints. Algebraic modelling languages can make use of this definition for automatic consistency checks.

90C15 Stochastic programming
AMPL; MSLiP; SMPS reader
Full Text: DOI
[1] Beale, E.M.L.; Forest, J.J.H.; Taylor, C.J., Multi-time-period stochastic programming, () · Zbl 0459.90062
[2] Birge, J.R., Decomposition and partitioning methods for multistage stochastic linear programs, Oper. res, 33, 989-1007, (1985) · Zbl 0581.90065
[3] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King, S.W. Wallace, A standard input format for multiperiod stochastic linear programs, COAL Newsletter #17, 1987. pp. 1-19.
[4] Birge, J.R.; Louveaux, F., Introduction to stochastic programming, (1997), Springer New York · Zbl 0892.90142
[5] Bradley, S.P.; Crane, D.B., Managing a bank portfolio over time, ()
[6] Charnes, A.; Cooper, W.W., Chance-constrained programming, Manage. sci, 6, 73-79, (1959) · Zbl 0995.90600
[7] Dempster, M.A.H., Introduction to stochastic programming, () · Zbl 0484.90076
[8] Entriken, R., Language constructs for modeling stochastic linear programs, Ann. oper. res, 104, 49-66, (2001) · Zbl 1007.90042
[9] Ermoliev, Yu.; Wets, R.J.-B., Introduction, () · Zbl 0665.90070
[10] Fourer, R.; Gay, D.M.; Kernighan, B.W., AMPL: A modelling language for mathematical programming, (1993), The Scientific Press San Francisco, CA
[11] Gassmann, H.I., Mslip: a computer code for the multistage stochastic linear programming problem, Math. programming, 47, 407-423, (1990) · Zbl 0701.90070
[12] Gassmann, H.I.; Schweitzer, E., A comprehensive input format for stochastic linear programs, Ann. oper. res, 104, 89-125, (2001) · Zbl 1081.90503
[13] Kall, P.; Wallace, S.W., Stochastic programming, (1994), Wiley Chichester, UK · Zbl 0812.90122
[14] Kristjansson, B., MPL modelling system user manual (version 2.8), (1993), Maximal Software, Inc Arlington, VA
[15] B. Kristjansson, Optimization Modeling in Distributed Applications, paper presented at INFORMS Roundtable Savannah, Georgia, February 2001. Slides available as World-wide web document http://www.maximal-usa.com/slides/Svna01Max/index.htm, 2001.
[16] Lane, M.; Hutchinson, P., A model for managing a certificate of deposit portfolio under uncertainty, ()
[17] L. Lopes, R. Fourer, XML-based proposals for Optimization, World-wide web document, http://senna.iems.nwu.edu/xml/, 2001.
[18] Prékopa, A., Stochastic programming, (1995), Kluwer Academic Publishers Dordrecht/Boston/London · Zbl 0834.90098
[19] Raiffa, H.; Schlaifer, R., Applied statistical decision theory, (1968), Harvard University Press Boston · Zbl 0181.21801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.