×

zbMATH — the first resource for mathematics

The Schrödinger-HJW theorem. (English) Zbl 1099.81006
Summary: A concise presentation of E. Schrödinger’s ancilla theorem [Proc. Camb. Philos. Soc. 32, 446–452 (1936; Zbl 0015.04403)] and its several recent rediscoveries.

MSC:
81P05 General and philosophical questions in quantum theory
81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. E. Schrödinger, ”Probability relations between separated systems,” Proc. Camb. Phil. Soc. 32, 446–452 (1936). · JFM 62.1613.03 · doi:10.1017/S0305004100019137
[2] 2. E. T. Jaynes, ”Information theory and statistical mechanics. II,” Phys. Rev. 108(2), 171–190 (1957). · Zbl 0084.43701 · doi:10.1103/PhysRev.108.171
[3] 3. N. Hadjisavvas, ”Properties of mixtures on non-orthogonal states,” Lett. Math. Phys. 5, 327–332 (1981). · doi:10.1007/BF00401481
[4] 4. L. P. Hughston, R. Jozsa, and W. K. Wootters, ”A complete classification of quantum ensembles having a given density matrix,” Phys. Lett. A 183, 14–18 (1993). · doi:10.1016/0375-9601(93)90880-9
[5] 5. N. Gisin, ”Stochastic quantum dynamics and relativity,” Helvetica Physica Acta 62, 363–371 (1989). · Zbl 0632.46068
[6] 6. N. D. Mermin, ”What do these correlations know about reality? Nonlocality and the absurd,” Found. Phys. 29(4), 571–587 (1999); quant-ph/9807055. · doi:10.1023/A:1018864225930
[7] 7. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974).
[8] 8. K. A. Kirkpatrick, ”Uniqueness of a convex sum of products of projectors,” J. Math. Phys. 43(1), 684–686 (2002), quant-ph/0104093. · Zbl 1052.81010 · doi:10.1063/1.1423764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.