×

zbMATH — the first resource for mathematics

Optimizing lattice Boltzmann simulations for unsteady flows. (English) Zbl 1099.76051
Summary: We present a detailed analysis of lattice Boltzmann approach to model time-dependent Newtonian flows. The aim is to find optimized simulation parameters for a desired accuracy with minimal computational time. Simulation parameters for fixed Reynolds and Womersley numbers are studied. We investigate the influence of Mach number and different boundary conditions on the accuracy and performance of the method, and suggest ways to enhance the convergence behavior.

MSC:
76M28 Particle methods and lattice-gas methods
76N15 Gas dynamics (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caflisch, R.E., Fluid dynamics and the Boltzmann equation, (), 195-226
[2] Ramaswamy, S., Adv phys, 50, 297, (2001)
[3] Cercingnani, C., J quant spec rad trans, 197, 973, (1971)
[4] Frisch, U.; Hasslacher, B.; Pomeau, Y., Phys rev lett, 56, 1505, (1986)
[5] Higuera, F.J.; Succi, S.; Benzi, R., Europhys lett, 9, 345, (1989)
[6] Rothmann, D.H.; Zaleski, S., Lattice-gas cellular automata, simple models of complex hydrodynamics, (1997), Cambridge University Press Cambridge · Zbl 0931.76004
[7] Rivet, J.P.; Boon, J.P., Lattice gas hydrodynamics, (2001), Cambridge University Press Cambridge, UK · Zbl 1034.82056
[8] McNamara, G.R.; Zanetti, G., Phys rev lett, 61, 2332, (1988)
[9] Chen, S.; Doolen, G.D., Ann rev fluid mech, 30, 329, (1998)
[10] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford University Press Oxford, UK · Zbl 0990.76001
[11] Artoli, A.M.; Hoekstra, A.G.; Sloot, P.M.A., Int J mod phys C, 13, 1119, (2002)
[12] He, X.; Luo, L.S., Phys rev E, 56, 6811, (1997)
[13] Hou, S.; Zou, Q.; Chen, S.; Doolen, G.; Cogley, A.C., J comput phys, 118, 329, (1995)
[14] Filippova, O.; Hänel, D., Int J mod phys C, 9, 1271, (1998)
[15] Mei, R.W.; Luo, L.S.; Shyy, W., J comput phys, 155, 307, (1999)
[16] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Phys fluids, 13, 3452, (2001)
[17] Zou, Q.; Hou, S.; Chen, S.; Doolen, G.D., J stat phys, 81, 35, (1995)
[18] He, X.Y.; Luo, L.S., J stat phys, 88, 927, (1997)
[19] Guo, Z.L.; Shi, B.C.; Wang, N.C., J comput phys, 165, 288, (2000)
[20] Holdych, D.J.; Noble, D.R.; Georgiadis, J.G.; Buckius, R.O., J comput phys, 193, 595, (2004)
[21] Artoli, A.M.; Hoekstra, A.G.; Sloot, P.M.A., Int J mod phys C, 14, 835, (2003)
[22] Zou, Q.; He, X., Phys fluids, 9, 1591, (1997)
[23] Skordos, P.A., Phys rev E, 48, 4823, (1993)
[24] Womersley, J.R., J physiol, 127, 553, (1955)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.