×

zbMATH — the first resource for mathematics

Developments in structural-acoustic optimization for passive noise control. (English) Zbl 1099.74538
Low noise constructions receive more and more attention in highly industrialized countries. Consequently, decrease of noise radiation challenges a growing community of engineers. One of the most efficient techniques for finding quiet structures consists in numerical optimization. Herein, we consider structural-acoustic optimization understood as an (iterative) minimum search of a specified objective (or cost) function by modifying certain design variables. Obviously, a coupled problem must be solved to evaluate the objective function. In this paper, we will start with a review of structural and acoustic analysis techniques using numerical methods like the finite- and/or the boundary-element method. This is followed by a survey of techniques for structural-acoustic coupling. We will then discuss objective functions. Often, the average sound pressure at one or a few points in a frequency interval accounts for the objective function for interior problems, whereas the average sound power is mostly used for external problems. The analysis part will be completed by review of sensitivity analysis and special techniques. We will then discuss applications of structural-acoustic optimization. Starting with a review of related work in pure structural optimization and in pure acoustic optimization, we will categorize the problems of optimization in structural acoustics. A suitable distinction consists in academic and more applied examples. Academic examples include simple structures like beams, rectangular or circular plates and boxes; real industrial applications consider problems like that of a fuselage, bells, loudspeaker diaphragms and components of vehicle structures. Various different types of variables are used as design parameters. Quite often, locally defined plate or shell thickness or discrete point masses are chosen. Furthermore, all kinds of structural material parameters, beam cross sections, spring characteristics and shell geometry account for suitable design modifications. This is followed by a listing of constraints that have been applied. After that, we will discuss strategies of optimization. Starting with a formulation of the optimization problem we review aspects of multi-objective optimization, approximation concepts and optimization methods in general. In a final chapter, results are categorized and discussed. Very often, quite large decreases of noise radiation have been reported. However, even small gains should be highly appreciated in some cases of certain support conditions, complexity of simulation, model and large frequency ranges. Optimization outcomes are categorized with respect to objective functions, optimization methods, variables and groups of problems, the latter with particular focus on industrial applications. More specifically, a close-up look at vehicle panel shell geometry optimization is presented. Review of results is completed with a section on experimental validation of optimization gains. The conclusions bring together a number of open problems in the field.

MSC:
74P10 Optimization of other properties in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Q05 Hydro- and aero-acoustics
74-02 Research exposition (monographs, survey articles) pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. J. Abspoel, L. F. P. Etman, J. Vervoort, R. A. van Rooij, A. J. G. Schoofs, and J. E. Rooda (2001). Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation,Structural and Multidisciplinary Optimization,22, 125–138.
[2] H. M. Adelman and R. T. Haftka (1986). Sensitivities for discrete structural systems,AIAA Journal,24, 823–832.
[3] R. A. Adey, S. M. Niku, J. Baynham, and P. Burns (1995). Predicting acoustic contributions and sensitivity, application to vehicle structures. In C. A. Brebbia (ed),Computational Acoustics and its Environmental Applications, pages 181–188. Computational Mechanics Publications.
[4] S. Ahmad and P. K. Banerjee (1986). Free vibration analysis by BEM using particular integrals.ASCE Journal Engineering Mechanics,112, 682–695.
[5] A. Ali, C. Rajakumar, and S. M. Yunus (1995). Advances in acoustic eigenvalue analysis using boundary element method.Computers and Structures,56(5), 837–847. · Zbl 1002.76539
[6] S. Amini, C. Ke, and P. J. Harris (1990). Iterative solution of boundary element equations for the exterior helmholtz problem.Journal of Vibration and Acoustics,112, 257–262. April.
[7] S. Amini and N. D. Maines (1998). Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation,International Journal for Numerical Methods in Engineering,41, 875–898. · Zbl 0907.65118
[8] M. A. Arslan and P. Hajela (2001). Use of counterpropagation neural networks to enhance the concurrent subspace optimization strategy.Engineering Optimization,33, 327–349.
[9] R. J. Astley (1987). A comparative note on the effects of local versus bulk reaction models for air moving ducts lined on all sides.Journal of Sound and Vibration,117(1), 191–197.
[10] R. J. Astley (1998). Finite elements in acoustics. InSound and Silence: Setting the Balance–Proceedings of the INTERNOISE 98, volume 1, pages 3–17, Christchurch. New Zealand Acoustical Society Inc.
[11] R. J. Astley (1998). Mapped spheroidal elements for unbounded wave problems.International Journal for Numerical Methods in Engineering,41, 1235–1254. · Zbl 0924.76056
[12] R. J. Astley, J.-P. Coyette, and L. Cremes (1998). Three dimensional wave envelope elements of variable order for acoustical radiation and scattering. Part ii: Formulation in the time domain.Journal of the Acoustical Society of America,103, 64–72.
[13] R. J. Astley and A. Cummings (1987). A finite element scheme for attenuation in ducts lined with porous material: Comparison, with experiment,Journal of Sound and Vibration,116, 239–263.
[14] R. J. Astley, G. J. Macaulay, and J.-P. Coyette (1994). Mapped wave envelope elements for acoustical radiation and scattering,Journal of Sound and Vibration,170, 97–118. · Zbl 0925.76419
[15] R. J. Astley, G. J. Macaulay, J.-P. Coyette, and L. Cremers (1998). Three dimensional wave envelope elements of variable order for acoustical radiation and scattering. Part i: Formulation in the frequency domain.Journal of the Acoustical Society of America,103, 49–63.
[16] T. W. Athan and P. Y. Papalambros (1996). A note on weighted criteria methods for compromise solutions in multi-objective optimization.Engineering Optimization,27, 155–176.
[17] K. E. Atkinson (1997).The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, 1st edition. · Zbl 0899.65077
[18] T. Back (1996).Evolutionary algorithms in theory and practice. Oxford University Press.
[19] R. S. Ballinger, E. L. Peterson, and D. L. Brown (1991). Design optimization of a vibration exciter head exapander.Sound and Vibration,25, 18–25.
[20] P. K. Banerjee and D. P. Henry (1988). BEM formulations for body forces using particular integrals. In M. Tanaka and T. A. Cruse, editors,Boundary Element Methods in Applied Mechanics, Proceedings of the First Joint Japan/US Symposium on Boundary Element Methods, pages 25–34, Oxford, Pergamon Press.
[21] J.-F. M. Barthelemy, and R. T. Haftka (1993). Approximation concepts for optimum structural design–a review.Structural Optimization,5(3), 129–144.
[22] M. Bassaou and P. Siarry (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions.Structural and Multidisciplinary Optimization,23, 63–74.
[23] K.-J. Bathe (1982).Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs.
[24] K.-J. Bathe, C. Nitikitpaiboon, and X. Wang (1995). A mixed displacement-based finite element formulation for acoustic fluid-structure interaction.Computers and Structures,56, 225–237. · Zbl 1002.76536
[25] R. Battiti and G. Tecchiolli (1996). The continuous reactive tabu search: Blending combinatorial optimization and stochastic search for global optimization.Annals of Operations Research,63, 153–188. · Zbl 0851.90093
[26] T. Bauer and G. Henneberger (1999). Three-dimensional calculation and optimization of the acoustic field of the induction furnace caused by electromagnetic forces.IEEE Transactions on Magnetics,35(3), 1598–1601, May.
[27] A. D. Belegundu (1985). Lagrangian approach to design sensitivity analysis.Journal of Engineering Mechanics,111, 680–695.
[28] A. D. Belegundu, R. R. Salagame, and G. H. Koopmann (1994). A general optimization strategy for sound power minimization.Structural Optimization,8(2–3), 113–119.
[29] M. P. Bendsoe (1995).Optimization of Structural Topology, Shape and material. Springer Verlag, Berlin Heidelberg New York.
[30] G. W. Benthien and H. A. Schenck (1991). Structural-acoustic coupling. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 6, pages 109–129. Computational Mechanics Publications and Elsevier Applied Science.
[31] A. Bermudez, P. Gamallo, L. Hervella-Nieto, and R. Rodriguez (2002). Finite element analysis of pressure formulation of the elestoacoustic problem.Numerische Mathematik. In print.
[32] A. Bermudez and R. Rodriguez (1994). Finite element computations of the vibration modes of a fluid-solid system.Computer Methods in Applied Mechanics and Engineering,119, 355–370. · Zbl 0851.73053
[33] A. Bermudez and R. Rodriguez (2001). Analysis of finite element method for pressure/potential formulation of elastoacoustic spectral problems.Mathematics of Computation,71(238), 537–552. · Zbl 0992.74066
[34] R. J. Bernhard (1985). A finite element method for synthesis of acoustical, shapes,Journal of Sound and Vibration,98(1), 55–65.
[35] R. J. Bernhard (1986). Shape optimization of reactive mufflers,Noise Control Engineering Journal,27(1), 10–17.
[36] R. J. Bernhard and D. C. Smith (1991). Acoustic design sensitivity analysis. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 4, pages 77–93. Computational Mechanics Publications and Elsevier Applied Science.
[37] R. J. Bernhard and S. Takeo (1988). A finite element procedure for design of cavity acoustical treatments.Journal of the Acoustical Society of America,83, 2224–2230.
[38] A. N. Bespalov (1999). Cost-effective solution of the boundary integral equations for 3d Maxwell problems.Russian Journal of Numerical Analysis and Mathematical Modelling,14(5), 403–428. · Zbl 1033.78011
[39] P. Bettess (1992).Infinite elements. Penshaw Press, Sunderland. · Zbl 0779.68047
[40] G. L. Bilbro and W. E. Snyder (1991). Optimization of functions with many minima.IEEE Transactions on Systems, Man, and Cybernetics,21 (4), 840–849.
[41] F. Bitsie and R. J. Bernhard (1998). Sensitivity calculations for structural-acoustic EFEM predictions.Noise Control Engineering Journal,46(3), 91–96.
[42] V. B. Bokil and U. S. Shirahatti (1994). A new modal technique for sound-structure interaction problems.Journal of Sound and Vibration,175, 23–41. · Zbl 0925.73664
[43] G. V. Borgiotti (1990). The power radiated by a vibrating body in an acoustic fluid and its determination from acoustic measurements.Journal of the Acoustical Society of America,88(4), 1884–1893.
[44] M. J. Box (1965). A new method of constrained optimization and comparison with other methods.Computer Journal,8(1), 42–52. · Zbl 0142.11305
[45] J. Branke, T. Kaußler and H. Schmeck (2001). Guidance in evolutionary multi-objective optimization.Advances in Engineering Software,32, 499–507. · Zbl 1003.68576
[46] C. A. Brebbia, J. J. d. Rego Silva, and P. W. Patridge (1991). Computational formulation. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 2, pages 13–60. Computational Mechanics Publications and Elsevier Applied Science.
[47] J. Bretl (1989). Prediction and reduction of in-vehicle noise due to road irregularity and other inputs.SAE-paper 890100, pages 207–212.
[48] M. Bruyneel, P. Duysinx, and C. Fleury (2002). A family of mma approximations for structural optimization.Structural and Multidisciplinary Optimization,24, 263–276.
[49] R. T. Bührmann (2000). The minimization of noise diffraction over an irregularly shaped wall. InInternational Workshop on Multidisciplinary Design Optimization, pages 37–49, Pretoria, South Africa, August.
[50] D. S. Burnett (1994). A three dimensional acoustic infinite element based on a prolate spheroidal multipole expansion.Journal of the Acoustical Society of America,96, 2798–2816.
[51] D. S. Burnett and R. L. Holford (1997). 3 acoustic infinite element based on a oblate spheroidal multipole expansion. United States Patent 5604893.
[52] D. S. Burnett and R. L. Holford (1997). 3 acoustic infinite element based on a prolate spheroidal multipole expansion. United States Patent 5604891.
[53] D. S. Burnett and R. L. Holford (1998). An ellipsoidal acoustic infinite element.Computer Methods in Applied Mechanical Engineering,164, 49–76. · Zbl 0962.76045
[54] D. S. Burnett and R. L. Holford (1998). Prolate and oblate spheroidal acoustic infinite elements.Computer Methods in Applied Mechancal Engineering,158, 117–141. · Zbl 0954.76042
[55] A. J. Burton and G. F. Miller (1971). The application of integral equation methods to the numerical solution of some exterior boundary-value problems.Proceedings of the Royal Society of London,323, 201–220. · Zbl 0235.65080
[56] C. Cabos and F. Ihlenburg (2002). Vibrational analysis of ships with coupled finite and boundary elements.Journal of Computational Acoustics. in print. · Zbl 1360.74146
[57] G. Chandler (1979).Superconvergence of numerical solutions to second kind integral equations. Phd-dissertation, Australian National University, Canberra.
[58] F. Chatelin and R. Lebbar (1981). The iterated projection solution for the Fredholm integral equation of the second kind.Journal of the Australian Mathematical Society, Series B,22, 439–451. · Zbl 0472.65093
[59] R. Chelouah and P. Siarry (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions.Journal of Heuristics,6(2), 191–213. · Zbl 0969.68641
[60] R. Chelouah and P. Siarry (2000). Tabu search applied to global optimization.European Journal of Operational Research,123(2), 256–270. · Zbl 0961.90037
[61] J. T. Chen, M. H. Chang, K. H. Chen and I. L. Chen (2002). Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function.Computational Mechanics,29, 392–408. · Zbl 1146.76622
[62] P. T. Chen (1997). Vibrations of submerged structures in a heavy acoustic medium using radiation modes.Journal of Sound and Vibration,208(1), 55–71.
[63] P. T. Chen and J. H. Ginsberg (1995). Complex power, reciprocity, and radiation modes for submerged bodies.Journal of the Acoustical Society of America,98(6), 3343–3351.
[64] Z. S. Chen, G. Hofstetter and H. A. Mang (1993). A 3d boundary element method for determination of acoustic eigenfrequencies considering admittance boundary conditions.Journal of Computational Acoustics,1(4), 455–468. · Zbl 1360.76164
[65] Z. S. Chen, G. Hofstetter, and H. A. Mang (1997). A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering.Journal of Computational Acoustics,5(2), 219–241. · Zbl 1360.76128
[66] Z. S. Chen, G. Hofstetter, and H. A. Mang (1998). A Galerkin-type BE-FE formulation for elasto-acoustic coupling.Computer methods in applied mechanics and engineering,152, 147–155. · Zbl 0959.74063
[67] K. K. Choi, I. Shim, J. Lee, and H. T. Kulkarni (1993). Design sensitivity analysis of dynamic frequency responses of acousto-elastic built-up structures. In G. I. N. Rozvany, editor,Optimization of Large Structural Systems, volume 1, pages 329–343. Kluwer Academic Publishers.
[68] K. K. Choi, I. Shim, and S. Wang (1997). Design sensitivity analysis of structure-induced noise and vibration.Journal of Vibration and Acoustics,119, 173–179, April.
[69] S. T. Christensen and N. Olhoff (1998). Shape optimization of a loudspeaker diaphragm with respect to sound directivity properties.Control and Cybernetics,27(2), 177–198. · Zbl 0941.49024
[70] S. T. Christensen, S. V. Sorokin, and N. Olhoff (1998). On analysis and optimization in structural acoustics–Part i: Problem formulation and solution techniques.Structural Optimization,16, 83–95.
[71] S. T. Christensen, S. V. Sorokin, and N. Olhoff (1998). On analysis and optimization in structural acoustics–Part ii: Exemplifications for axisymmetric structures.Structural Optimization,16, 96–107.
[72] R. D. Ciskowski and C. A. Brebbia, editors (1991).Boundary Elements in Acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton Boston. · Zbl 0758.76036
[73] L.-M. Cleon and A. Willaime (2000). Aero-acoustic optimization of the fans and cooling circuit on SNCF’s X 72500 railcar.Journal of Sound and Vibration,231 (3), 925–933.
[74] E. W. Constans, A. D. Belegundu, and G. H. Koopmann (1998). Design approach for minimizing sound power from vibrating shell structures.AIAA Journal,36(2), 134–139. · Zbl 0905.76071
[75] E. W. Constans, G. H. Koopmann, and A. D. Belegundu (1998). The use of modal tailoring to minimize the radiated sound power of vibrating shells: Theory and experiment.Journal of Sound and Vibration,217 (2), 335–350. · Zbl 0905.76071
[76] A. Corana, M. Marchesi, C. Martini, and S. Ridella (1987). Minimizing multi-modal functions of continuous variables with the simulated annealing algorithm.ACM Transactions on Mathematical Software,13, 262–280. · Zbl 0632.65075
[77] J. P. Coyette and K. R. Fyfe (1990). An improved formulation for the acoustic eigenmode extraction from boundary element models.Journal of Vibration and Acoustics,112, 392–397.
[78] J.-P. Coyette, C. Lecomte, J.-L. Migeot, J. Blanche, M. Rochette, and G. Mirkovic (1999). Calculation of vibro-acoustic frequency response functions using a single frequency boundary element solution and a Padé expansion.Acustica,85(3), 371–377.
[79] J.-P. Coyette, H. Wynendaele, and M. K. Chargin (1993). A global acoustic sensitivity tool for improving structural design.Proceedings-SPIE The International Society for Optical Engineering, Issue 1923, pages 1389–1394.
[80] A. Craggs (1971). The transient response of a coupled plate-acoustic system using plate and acoustic finite elements.Journal of Sound and Vibration,15(4), 509–528.
[81] R. R. Craig and C. J. Chang (1976). Free-interface methods of substructre coupling for dynamic analysis.AIAA Journal,14(11), 1633–1635.
[82] S. P. Crane, K. A. Cunefare, S. P. Engelstad, and E. A. Powell (1997). Comparison of design optimization formulations for minimization of noise transmission in a cylinder.Journal of Aircraft,34(2), 236–243.
[83] L. Cremers, K. R. Fyfe and P. Sas (2000). A variable order infinite element for multi-domain boundary element modelling of acoustic radiation and scattering.Applied Acoustics,59, 185–220.
[84] L. Cremers, P. Guisset, L. Meulewaeter, and M. Tournour (2000). A computer-aided engineering method for predicting the acoustic signature of vibrating structures using discrete models. Great Britain Patent No. GB 2000-16259.
[85] K. A. Cunefare (1991). The minimum multi-modal radiation efficiency of baffled finite beams.Journal of the Acoustical Society of America,90, 2521–2529.
[86] K. A. Cunefare, S. P. Crane, S. P. Engelstad, and E. A. Powell (1999). Design minimization of noise in stiffened cylinders due to tonal external excitation.Journal of Aircraft,36(3), 563–570.
[87] K. A. Cunefare and M. N. Currey (1994). On the exterior acoustic radiation modes of structures.Journal of the Acoustical Society of America,96(4), 2302–2312.
[88] K. A. Cunefare, M. N. Currey, M. E. Johnson, and S. J. Elliott (2001). The radiation efficiency grouping of free-space acoustic radiation modes.Journal of the Acoustical Society of America,109(1), 203–215.
[89] K. A. Cunefare and G. H. Koopmann (1992). Acoustic design sensitivities for structural radiators.Journal of Vibration and Acoustics,114, 178–186, April.
[90] M. N. Currey and K. A. Cunefare (1995). The radiation modes of baffled finite plates.Journal of the Acoustical Society of America,98(3), 1570–1580.
[91] D. Cvijovic and J. Klinowski (1995). Taboo search. An approach to the multiple minima problem.Science,667, 664–666. · Zbl 1226.90101
[92] F. Dirschmid, H. Troidl, A. Kunert, S. Dillinger, O. von Estorff, E. Negele, and M. Stowasser (1996). Akustische Optimierung von Getriebegehäusen. InBerechnung und Simulation im Fahrzeugbau, pages 633–651. VDI-Report 1283.
[93] S. J. Elliott, Book review of [180] (1998).Journal of Sound and Vibration,214(5), 987–989.
[94] S. P. Engelstad, K. A. Cunefare, E. A. Powell, and V. Biesel (2000). Stiffener shape design to minimize interior noise.Journal of Aircraft,37(1), 165–171.
[95] H. Eschenauer, J. Koski, and A. Oscycka (Eds) (1990).Multicriteria Design Optimization Procedures and Applications. Springer Verlag. · Zbl 0743.90116
[96] H. A. Eschenauer and N. Olhoff (2001). Topology optimization of continuum structures: A review.Applied Mechanics Reviews,54, 331–389.
[97] B. Esping (1995). Design optimization as an engineering tool.Structural Optimization,10, 137–152.
[98] L. F. P. Etman (1997).Optimization of Multibody Systems using Approximation Concepts. Dissertation, Technische Universiteit Eindhoven. · Zbl 0875.70066
[99] G. C. Everstine (1981). A symmetric potential formulation for fluid-structure interaction.Journal of Sound and Vibration,79, 157–160.
[100] G. C. Everstine and F. M. Henderson (1990). Coupled finite element/boundary element approach for fluid structure interaction.Journal of the Acoustical Society of America,87(5), 1938–1947.
[101] G. M. Fadel, M. F. Riley, and J. M. Barthelemy (1990). Two-point exponential approximation method for structural optimization.Structural Optimization,2, 117–124.
[102] J. B. Fahnline and G. H. Koopmann (1995). Design for a high-efficiency sound source based on constrained optimization procedures.Acoustical Physics,41(5), 700–706.
[103] J. B. Fahnline and G. H. Koopmann (1996). A lumped parameter model for the acoustic power output from a vibrating structure.Journal of the Acoustical Society of America,100(6), 3539–3547.
[104] J. B. Fahnline and G. H. Koopmann (1997). Numerical implementation of the lumped parameter model for the acoustic power output from a vibrating structure.Journal of the Acoustical Society of America,102(1), 179–192.
[105] G. R. Feijoo, M. Malhotra, A. A. Oberai, and P. M. Pinsky (2001). Shape sensitivity calculations for exterior acoustics problems.Engineering computations,18(3/4), 376–391. · Zbl 1020.76026
[106] K. A. Fisher (1995). The application of genetic algorithms to optimising the design of an engine block for low noise. InGenetic Algorithms in Engineering Systems: Innovations and Applications, pages 18–22. IEEE Conference Publication No. 414.
[107] D. L. Flanigan and S. G. Borders (1984). Application of acoustic modeling methods for vehicle boom analysis.SAE-paper 840744, pages 207–217.
[108] J. W. Free, A. R. Parkinson, G. R. Bryce, and R. J. Balling (1987). Approximation of computationally expensive and noisy functions for constrained nonlinear optimization.Journal of Mechanisms, Transmissions, and Automation in Design,109, 528–532.
[109] R. Freymann (1999). Sounddesign und Akustikentwicklung im Automobilbau. InMaschinenakustik ’99–Entwicklung lärm- und schwingungsarmer Produkte, pages 47–64 VDI-Report 1491.
[110] R. Freymann, R. Stryczek, and H. Spannheimer (1995). Dynamic response of coupled structural-acoustic systems.Journal of Low Frequency Noise and Vibration,14(1), 11–32.
[111] M. I. Frishwell and J. E. Mottershead (1995).Finite element model updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht Boston London. · Zbl 0855.73002
[112] D. Fritze, S. Marburg, and H.-J. Hardtke (2002). Reducing radiated sound power of plates and shallow shells by local modification of geometry.Acustica/Acta Acustica. in print.
[113] A. A. Gates and M. L. Accorsi (1993). Automatic shape optimization of three-dimensional shell structures with large shape changes.Computers and Structures,49(1), 167–178. · Zbl 0800.73419
[114] L. Gaul, M. Wagner, and W. Wenzel (1998). Efficient field point evaluation by combined direct and hybrid boundary element methods.Engineering Analysis with Boundary Elements,21(3), 215–222. · Zbl 0957.76044
[115] L. Gaul, M. Wagner, W. Wenzel, and N. A. Dumont (2001). Numerical treatment of acoustical problems with the hybrid boundary element method.International Journal of Solids and Structures,38, 1871–1888. · Zbl 1011.76055
[116] L. Gaul and W. Wenzel (2002). A coupled symmetric BE-FE method for acoustic fluid-structure interaction.Engineering Analysis with Boundary Elements,26(7), 629–636. · Zbl 1037.74054
[117] K. Gerdes (1998). The conjugated versus the unconjugated infinite element method for the Helmholtz equation in exterior domains.Computer Methods in Applied Mechanical Engineering,152, 125–145. · Zbl 0944.65117
[118] K. Giebermann (2001). Multilevel representations of boundary integral operators.Computing,67, 183–207. · Zbl 0995.65121
[119] M. Ginsberg (2001). Influences on the solution process for large, numeric-intensive automotive simulations.Lecture Notes in Computer Science,2073, 1189–1198. · Zbl 0982.68948
[120] D. Givoli (1992).Numerical methods for problems in infinite domains. Elsevier Science, Amsterdam. · Zbl 0788.76001
[121] D. Givoli (1999). Recent advances in the DtN FE-method.Archives of Computational Methods in Engineering,6(2), 71–116.
[122] D. Givoli and T. Demchenko (2000). A boundary-perturbation finite element approach for shape optimization.International Journal for Numerical Methods in Engineering,47, 801–819. · Zbl 0962.76048
[123] W. L. Goffe, G. D. Ferrier, and J. Rogers (1994). Global optimization of statistical functions with simulated annealing.Journal of Econometrics,60, 65–99. · Zbl 0789.62095
[124] R. V. Grandhi (1993). Structural optimization with frequency constraints.AIAA Journal,31(12), 2296–2303. · Zbl 0836.73050
[125] L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura (1998). Accelerating fast multipole methods for the Helmholtz equation at low frequencies.IEEE Computational Science and Engineering,5(3), 32–38. · Zbl 05092188
[126] M. Gustafsson and S. He (2000). An optimization approach to multi-dimensional time domain acoustic inverse problems.Journal of the Acoustical Society of America,108(4), 1548–1556.
[127] A. Habbal (1998). Nonsmooth shape optimization applied to linear acoustics.SIAM Journal for Optimization,8(4), 989–1006. · Zbl 0922.65050
[128] D. Hackenbroich (1988). Reduktion des Innengeräusches bei Nutzfahrzeugen durch rechnerische Optimierung des Mündungsgeräusches von Motoransauganlagen. InBerechnung und Simulation im Fahrzeugbau, pages 631–654, VDI-Report 669.
[129] R. Haftka and Z. Gürdal (1992).Elements of Structural Optimization. Kluwer Academic Publishers, Dortrecht. · Zbl 0782.73004
[130] R. T. Haftka and H. M. Adelman (1989). Recent developments in structural sensitivity analysis.Structural Optimization 1, 137–151.
[131] R. T. Haftka and R. V. Grandhi (1986). Structural shape optimization–a survey.Computer Methods in Applied Mechanical Engineering,57, 91–106. · Zbl 0591.73118
[132] R. T. Haftka, J. Nachlas, L. Watson, T. Rizzo, and R. Desai (1987). Two-point constraint approximation in structural optimization.Computer Methods in Applied Mechanical Engineering,60, 289–301. · Zbl 0591.73108
[133] I. Hagiwara, Z.-D. Ma, A. Arai, and K. Nagabuchi (1991). Reduction of vehicle interior noise using structural-acoustic sensitivity analysis methods.SAE Technical Paper Series No. 910208. 10 pages.
[134] S. R. Hahn and A. A. Ferri (1997). Sensitivity analysis of coupled structural-acoustic problems using perturbation techniques.Journal of the Acoustical Society of America,101(2), 918–924.
[135] P. Hajela (1992). Genetic search strategies in multicriterion optimal design.Structural Optimization,4, 99–107.
[136] P. Hajela (1999). Nongradient methods in multidisciplinary design optimization–status and potential.Journal of Aircraft,36(1), 255–265.
[137] P. Hajela and J. Yoo (1996). Constraint handling in genetic search using expression strategies.AIAA Journal,34(12), 2414–2420. · Zbl 0908.73050
[138] R. A. Hall (1994). Noise optimization of engine structures using response surface methods.Institution of Mechanical Engineers Conference Publications,3, 79–87.
[139] S. A. Hambric (1995). Approximation techniques for broad-band acoustic radiated noise design optimization problems.Journal of Vibration and Acoustics,117(1), 136–144, January.
[140] S. A. Hambric (1996). Sensitivity calculations for broad-band acoustic radiated noise design optimization problems.Journal of Vibration and Acoustics,118(7), 529–532, July.
[141] M. Hamdi, Y. Ousset, and G. Verchery (1978). A displacement method for the analysis of vibrations of coupled fluid-structure systems.International Journal for Numerical Methods in Engineering,13, 139–150. · Zbl 0384.76060
[142] U. Hänle and J. Sielaff (1998). Eine Berechnungstrategie zur Auslegung des komfortrelevanten Karosserie-Strukturverhaltens. InBerechnung und Simulation im Fahrzeugbau, pages 733–750. VDI-Report, 1411.
[143] I. Harari, K. Grosh, T. J. R. Hughes, M. Malhotra, P. M. Pinsky, J. R. Stewart, and L. L. Thompson (1996) Recent development in finite element methods for structural acoustics.Archives of Computational Methods in Engineering,3(2–3), 131–309.
[144] I. Harari and T. J. R. Hughes (1992). A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics.Computer Methods in Applied Mechanics and Engineering,97, 77–102. · Zbl 0775.76095
[145] L. Hermans and M. Brughmans (2000). Enabling vibro-acoustic optimization in a superelement environment: A case study.Proceedings-SPIE The International Society for Optical Engineering, Issue 4062//PT2, pages 1146–1152.
[146] F. Hibinger (1998).Numerische Strukturoptimierung in der Maschinenakustik Dissertation, Technische Universität Darmstadt.
[147] E. Hinton, M. Özakca, and V. R. Rao (1995). Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells, Part ii: Shape optimization.Journal of Sound and Vibration,181(4), 567–581.
[148] R. Hooke and T. A. Jeeves (1961). Direct search solution of numerical and statistical problems.Journal of the Association of Computing Machinery,8, 212–229. · Zbl 0111.12501
[149] Y.-L. Hsu (1994). A review of structural shape optimization.Computers in Industry,26, 3–13.
[150] G. Hübner (1991). Eine Betrachtung zur Physik der Schallabstrahlung.Acustica,75, 130–144.
[151] G. Hübner and A. Gerlach (1999).Schalleistungsbestimmung mit der DFEM, volume FB 846 ofSchriftenreihe der Bundesanstalt für Arbeitsmedizin (Forschung). Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund Berlin.
[152] G. Hübner, J. Messner, and E. Meynerts (1986),Schalleistungsbestimmung mit der Direkten Finite Elemente Methode, volume Fb 479 ofSchriftenreihe der Bundesanstalt für Arbeitsmedizin (Forschung). Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund Berlin.
[153] F. Ihlenburg (1998).Finite Element Analysis of Acoustic Scattering, volume 132 ofApplied Mathematical Sciences. Springer Verlag, Berlin Heidelberg New York. · Zbl 0908.65091
[154] M. Imregun and W. J. Visser (1991). A review of model updating technique.The Shock and Vibration Digest,23, 9–20.
[155] S.-I. Ishiyama, M. Imai, S.-I. Maruyama, H. Ido, N. Sugiura, and S. Suzuki (1988). The application of ACOUST/BOOM–A noise level prediction and reduction code.SAE-paper 880910, pages 195–205.
[156] A. H. Jawed and A. J. Morris (1984). Approximate higher-order sensitivities in structural design.Engineering Optimization,7, 121–142.
[157] A. H. Jawed and A. J. Morris (1985). Higher-order updates for dynamic responses in structural optimization.Computer Methods in Applied Mechanical Engineering,49, 175–201. · Zbl 0566.73074
[158] R. Jeans and I. C. Mathews (1991). Use of Lanczoz vectors in structural acoustic problems.ASME Applied Mechanics Division (AMD),128, 101–112. also:NCA Vol. 12.
[159] R. A. Jeans and I. C. Mathews (1990). Solution of fluid-structure interaction problems using a coupled finite element and variational boundary element technique.Journal of the Acoustical Society of America,88(5), 2459–2466.
[160] C. S. Jog (2002). Reducing radiated sound power by minimizing the dynamic compliance. In[238], pages 215–236. · Zbl 1065.76594
[161] C. S. Jog (2002). Topology design of structures subjected to periodic load.Journal of Sound and Vibration,253(3), 687–709.
[162] C. S. Jog, R. B. Haber, and M. P. Bendsoe (1994). Topology design with optimized self-adaptive materials.International Journal for Numerical Methods in Engineering,37, 1323–1350. · Zbl 0807.73044
[163] D. S. Jones (1974). Integral equations for the exterior acoustic problem.Quarterly Journal of Mechanics and Applied Mathematics,27, 129–142. · Zbl 0281.45006
[164] P. Juhl (2000). Iterative solution of the direct collocation BEM equations. InProceedings of the 7th International Congress on Sound and Vibration., volume IV, pages 2077–2084, Garmisch-Partenkirchen, Germany.
[165] J. H. Kane, S. Mao, and G. C. Everstine (1991). A boundary element formulation for acoustic shape sensitivity analysis.Journal of the Acoustical Society of America,90(1), 561–573, July.
[166] S. W. Kang and J. M. Lee (2000). Free vibration analysis of arbitrarily shaped two-dimensional cavities by the method of point matching.Journal of the Acoustical Society of America,107(3), 1153–1160.
[167] E. M. Kasprzak and K. E. Lewis (2001). Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method.Structural and Multidisciplinary Optimization,22, 208–218.
[168] A. J. Keane (1995). Passive vibration control via unusual geometries: The application of genetic algorithm optimization to structural design.Journal of Sound and Vibration,185(3), 441–453. · Zbl 1048.74567
[169] J. B. Keller and D. Givoli (1989). Exact nonreflecting boundary conditions.Journal of Computational Physics,82, 172–192. · Zbl 0671.65094
[170] P. H. L. Kessels (2001).Engineering toolbox for structural-acoustic design. Applied to MRI-scanners. Dissertation, Technische Universiteit Eindhoven.
[171] S. Kibsgaard (1992). Sensitivity analysis–the basis for optimization.International Journal for Numerical Methods in Engineering,34, 901–932.
[172] L. Kiefling and G. C. Feng (1976). Fluid-structure finite element vibration analysis.AIAA Journal,14(2), 199–203. · Zbl 0325.76017
[173] R. K. Kincaid, M. Weber, and J. Sobieszczanski-Sobieski (2001). Performance of a bell-curve based evolutionary optimization algorithm.Structural and Multidisciplinary Optimization,21, 261–271.
[174] S. Kirkpatrick, C. D. Gellat, Jr., and M. P. Vecchi (1983). Optimization by simulated annealing.Science, 220(4598), 671–680. · Zbl 1225.90162
[175] S. M. Kirkup (1998).The boundary element method in acoustics. Integrated Sound Software, Heptonstall. · Zbl 0913.65102
[176] R. E. Kleinmann, G. F. Roach, L. S. Schuetz, and J. Shirron (1988). An iterative solution to acoustic scatterin by rigid objects.Journal of the Acoustical Society of America,84(1) 385–391.
[177] F. G. Kollmann (1999).Maschinenakustik. Grundlagen, Meßtechnik, Berechnung, Beeinflussung. Springer Verlag, Berlin Heidelberg.
[178] B. U. Koo (1997). Shape design sensitivity analysis of acoustic problems using a boundary element method.Computers and Structures,65(5), 713–719. · Zbl 0922.76243
[179] B.-U. Koo, J.-G. Ih, and B.-C. Lee (1998). Acoustic shape sensitivity analysis using the boundary integral equation.Journal of the Acoustical Society of America,104(5), 2851–2860.
[180] G. H. Koopmann and J. B. Fahnline (1997).Designing Quiet Structures: A Sound Power Minimization Approach. Academic Press, San Diego, London.
[181] W. Kozukue, C. Pal, and I. Hagiwara (1992). Optimization of noise level reduction by truncated model coupled structural-acoustic sensitivity analysis.Computers in Engineering (ASME),2, 15–22.
[182] A. H. W. M. Kuijpers, G. Verbeek, and J. W. Verheij (1997). An improved acoustic Fourier boundary element formulation using fast Fourier transform integration.Journal of the Acoustical Society of America,102(3), 1394–1401.
[183] B. M. Kwak, J. S. Arora, and E. J. Haug, Jr (1975). Optimum design of damped vibration absorbers over a finite frequency range.AIAA Journal,13(4), 540–542.
[184] M. la Civita and A. Sestieri (1999). Optimization of an engine mounting system for vibroacoustic comfort improvement.Proceedings- SPIE The International Society for Optical Engineering, Issue 3727//PT2, pages 1998–2004.
[185] C. Lage and C. Schwab (1999). Advanced boundary element algorithms. In J. R. Whiteman, editor,The Mathematics of Finite Elements and Applications X–MAFELAP 1999, pages 283–306. Elsevier, Amsterdam. · Zbl 0959.65131
[186] C. Lage and C. Schwab (1999). Wavelet Galerkin algorithms for boundary integral equations.SIAM Journal for Scientific Computing,20(6), 2195–2222. · Zbl 0943.65134
[187] O. Laghrouche and P. Bettess (2000). Short wave modelling using special finite elements.Journal of Computational Acoustics,8(1), 189–210. · Zbl 0960.65122
[188] J. S. Lamancusa (1988). Geometric optimization of internal combustion engine induction systems for minimum noise transmission.Journal of Sound and Vibration,127(2), 303–318.
[189] J. S. Lamancusa (1993). Numerical optimization techniques for structural-acoustic design of rectangular panels.Computers and Structures,48(4), 661–675. · Zbl 0795.73053
[190] J. S. Lamancusa and H. A. Eschenauer (1994). Design optimization methods for rectangular panels with minimal sound radiation.AIAA Journal,32(3), 472–479. · Zbl 0796.73045
[191] M. A. Lang and C. L. Dym (1975). Optimal acoustic design of sandwich panels.Journal of the Acoustical Society of America,57(6), 1481–1487.
[192] J. Lee and P. Hajela (1996). Parallel genetic algorithm implementation in multidisciplinary rotor blade design.Journal of Aircraft,33(5), 962–969.
[193] A. Lehr (1987). A carillon of major-third bells. Part iii: From theory to practice.Music Perception,4(3), 267–280.
[194] K. E. Lewis and F. Mistree (1998). The other side of multidisciplinary design optimization: Accomodating a multiobjective, uncertain and non-deterministic world.Engineering Optimization,31, 161–189.
[195] Q. Q. Liang and G. P. Steven (2002). A performance-based optimization method for topology design of continuum structures with mean compliance constraints.Computer Methods in Applied Mechanical Engineering,191, 1471–1489. · Zbl 1098.74660
[196] LMS Numerical Technologies, Leuven (2000).SYSNOISE User’s Manual, Rev. 5.5.
[197] Y. Lü, Q. Wang, Z. Hu, and J. Cui (1996). Optimization of acoustic impedance, geometric structure and operating condition of liners mounted in engine duct.Chinese Journal of Aeronautics,9(3), 193–203.
[198] J. Luo and H. C. Gea (1997). Modal sensitivity analysis of coupled acoustic-structural systems.Journal of Vibration and Acoustics,119, 545–550, October.
[199] Z.-D. Ma and I. Hagiwara (1991). Sensitivity analysis methods for coupled acoustic-structural systems. Part ii: Direct frequency response and its sensitivities.AIAA Journal,29(11), 1796–1801. · Zbl 0738.76066
[200] Z.-D. Ma and I. Hagiwara (1991). Sensitivity analysis methods for coupled acoustic-structural systems. Part i: Modal sensitivities.AIAA Journal,29(11), 1787–1795. · Zbl 0738.76065
[201] Z.-D. Ma and I. Hagiwara (1994). Development of new mode-superposition technique for truncating lower and/or higher-frequency modes (Application of eigenmode sensitivity analysis for systems with repeated eigenvalues).JSME International Journal, Series C,37(1), 7–13.
[202] Z. D. Ma, N. Kikuchi, and H. C. Cheng (1995). Topological design for vibrating structures.Computer Methods in Applied Mechanical Engineering,121, 259–280. · Zbl 0849.73045
[203] The MacNeal-Swendler Corporation (1998).MSC/Nastran manual, V70.5.
[204] S. N. Makarov and M. Ochmann (1998). An iterative solver for the Helmholtz integral equation for high frequency scattering.Journal of the Acoustical Society of America,103(2), 742–750.
[205] S. E. Makris, C. L. Dym, and J. MacGregor Smith (1986). Transmission loss optimization in acoustic sandwich panels.Journal of the Acoustical Society of America,92(6), 1833–1843.
[206] M. Malhotra and P. M. Pinsky (1996). A matrix-free interpretation of the non-local Dirichlet-to-Neumann radiation boundary condition.International Journal of Numerical Methods in Engineering,39, 3705–3713. · Zbl 0883.76050
[207] M. Malhotra and P. M. Pinsky (2000). Efficient computation of multi-frequency far-field solutions of the Helmholtz equation using Pade approximation.Journal of Computational Acoustics,8(1), 223–240. · Zbl 1360.76201
[208] S. Marburg (1996). Calculation and visualization of acoustic influence co-efficients in vehicle cabins using mode superposition techniques. In C. A. Brebbia, J. B. Martins,et al. (Eds),Boundary Elements XVIII Proceedings of the 18th International Conference on BEM in Braga (Portugal), pages 13–22, Southampton Boston. Computational Mechanics Publications. · Zbl 0870.76046
[209] S. Marburg (1998). Explicit frequency dependent matrices in the BE formulation. InSound and Silence: Setting the Balance–Proceedings of the INTERNOISE 98, volume 3, pages 1533–1536, Christchurch. New Zealand Acoustical Society Inc.
[210] S. Marburg (2002). Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part i: Theory.Structural and Multidisciplinary Optimization,24(1), 51–59.
[211] S. Marburg (2002). A general concept for design modification of shell meshes in structural–acoustic optimization. Part i: Formulation of the concept.Finite Elements in Analysis and Design,38(8), 725–735. · Zbl 1100.74635
[212] S. Marburg (2002). Six elements per wavelength. Is that enough?Journal of Computational Acoustics,10(1), 25–51. · Zbl 1360.76168
[213] S. Marburg, H.-J. Beer, J. Gier, H.-J. Hardtke, R. Rennert, and F. Perret (2002). Experimental verification of structural-acoustic modeling and design optimization.Journal of Sound and Vibration,252(4), 591–615.
[214] S. Marburg and H.-J. Hardtke (2001). Shape optimization of a vehicle hat-shelf: Improving acoustic properties for different load-cases by maximizing first eigenfrequency.Computers and Structures,79, 1943–1957.
[215] S. Marburg and H.-J. Hardtke (2002). Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part ii: Application to a vehicle dashboard.Structural and Multidisciplinary Optimization,24(1), 60–71.
[216] S. Marburg and H.-J. Hardtke (2002). A general concept for design modification of shell meshes in structural-acoustic optimization. Part ii: Application to a vehicle floor panel.Finite Elements in Analysis and Design,38(8), 737–754. · Zbl 1100.74636
[217] S. Marburg and H.-J. Hardtke (2002). Investigation and optimization of a spare wheel well to reduce vehicle interior noise.Journal of Computational Acoustics. In print. · Zbl 1360.74139
[218] S. Marburg, H.-J. Hardtke, R. Schmidt, and D. Pawandenat (1997). An application of the concept of acoustic influence coefficients for the optimization of a vehicle roof.Engineering Analysis with Boundary Elements,20(4), 305–310.
[219] S. Marburg, H.-J. Hardtke, R. Schmidt, and D. Pawandenat (1997). Design optimization of a vehicle panel with respect to cabin noise problems. InProceedings of the NAFEMS World-Congress, pages 885–896, Stuttgart.
[220] S. Marburg and S. Schneider (2002). Influence of element types on numeric error for acoustic boundary elements.Journal of Computational Acoustics. in print. · Zbl 1360.74147
[221] S. Marburg and S. Schneider (2002). Performance of iterative solvers for acoustic problems. Part i: Solvers and effect of diagonal preconditioning.Engineering Analysis with Boundary Elements. in print.
[222] J. B. Mariem and M. A. Hamdi (1987). A new boundary finite element method for fluid-structure interaction problems.International Journal of Numerical Methods in Engineering,24, 1251–1267. · Zbl 0614.76088
[223] A. F. Mastryukov (1999). Solution of an inverse problem for acoustic-wave equations by a multilevel optimization method.Russian Geology and Geophysics,40(5), 747–757.
[224] T. Matsumoto, M. Tanaka, and Y. Yamada (1995). Design sensitivity analysis of steady-state acoustic problems using boundary integral equation formulation.JSME International Journal, Series C,38(1), 9–16.
[225] A. J. McMillan and A. J. Keane (1996). Shifting resonances from a frequency band by applying concentrated masses to a thin rectangular plate.Journal of Sound and Vibration,192(2), 549–562.
[226] A. J. McMillan and A. J. Keane (1997). Vibration isolation in a thin rectangular plate using a large number of optimally positioned point masses.Journal of Sound and Vibration,202(2), 219–234. · Zbl 1235.74100
[227] F. P. Mechel (2001). Computational optimization of absorbers.Acustica,87, 513–518.
[228] J. M. Melenk and I. Babuska (1996). The partition of unity finite element method. Basic theory and applications.Computer Methods in Applied Mechanical Engineering,139, 289–314. · Zbl 0881.65099
[229] R. A. Meric (1996). Shape design sensitivities and optimization for the nonhomogeneous Helmholtz equation by BEM.Communications in Numerical Methods in Engineering,12(2), 95–105. · Zbl 0924.65102
[230] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equations of state calculations by fast computing machines.Journal of Chemical Physics,21(6), 1087–1092.
[231] G. Miccoli (1999). Vibro-acoustic optimization of earth-moving machine cab structural components. InProceedings of the Inter-Noise 99, volume 3, pages 1761–1766, Fort Lauderdale.
[232] M. G. Milsted, T. Zhang, and R. A. Hall (1993). A numerical method for noise optimization of engine structures.Proceedings of the Institution of Mechanical Engineers/Part D: Journal of Automobile Engineering,207, 135–143.
[233] H. P. Mlejnek, U. Jehle, and R. Schirrmacher (1992). Second order approximations in structural genesis and shape finding.International Journal for Numerical Methods in Engineering, 34(3):853–872. · Zbl 0825.73477
[234] D. C. Montgomery (1991).Design and Analysis of Experiments. John Wiley, New York. · Zbl 0747.62072
[235] H. Morand and R. Ohayon (1979). Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results.International Journal for Numerical Methods in Engineering, 14:741–755, 1979. · Zbl 0402.73052
[236] H. Morand and R. Ohayon (1995).Fluid Structure Interactions. J. Wiley & Sons, Chichester. · Zbl 0834.73002
[237] J. E. Mottershead and M. I. Frishwell (1993). Model updating in structural dynamics: A survey.Journal of Sound and Vibration,167, 347–375. · Zbl 0967.74525
[238] M. L. Munjal (Ed) (2002).IUTAM Symposium on Designing for Quietness. Kluwer Academic Publishers, Dortrecht/Boston/London. · Zbl 1014.00029
[239] K. Nagaya and L. Li (1997). Control of sound noise radiated from a plate using dynamic absorbers under the optimization by neural network.Journal of Sound and Vibration,208(2), 289–298.
[240] K. Naghshineh, G. H. Koopmann, and A. D. Belegundu (1992). Material tailoring of structures to achieve a minimum radiation condition.Journal of the Acoustical Society of America,92(2), 841–855.
[241] D. Nardini and C. A. Brebbia (1982). A new approach to free-vibration analysis using boundary elements. In C. A. Brebbia, editor,Boundary Element Methods in Engineering, Proceedings of the 4th Conference on BEM, pages 313–326, Southampton. Springer-Verlag. · Zbl 0541.73104
[242] D. J. Nefske, J. A. Wolf Jr., and L. J. Howell (1982). Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice.Journal of Sound and Vibration,80(2), 247–266.
[243] J. C. O. Nielsen (2000). Acoustic optimization of railway sleepers.Journal of Sound and Vibration,231(3), 753–764.
[244] A. A. Oberai, M. Malhotra, and P. M. Pinsky (1998). On the implementation of the Dirichletto-Neumann radiation condition for iterative solution of the Helmholtz equation.Applied Numerical Mathematics,27, 443–464. · Zbl 0928.65139
[245] A. A. Oberai and P. M. Pinsky (1998). A multiscale finite element method for the Helmholtz equation.Computer Methods in Applied Mechanical Engineering,154(3/4), 281–298. · Zbl 0937.65119
[246] A. A. Oberai and P. M. Pinsky (2000). A numerical comparison of finite element methods for the Helmholtz equation.Journal of Computational Acoustics,8(1), 211–221. · Zbl 1360.76149
[247] M. Ochmann (1999). The full-field equations for acoustic radiation and scattering.Journal of the Acoustical Society of America,105(3), 2674–2584.
[248] N. Olhoff (1974). Optimal design of vibrating rectangular panels.International Journal of Solid Structures,10, 93–109. · Zbl 0267.73046
[249] N. Olhoff (1976). A survey of the optimal design of vibrating structural elements. Part i: Theory.The Shock and Vibration Digest,8(8), 3–10.
[250] N. Olhoff (1976). A survey of the optimal design of vibrating structural elements. Part ii: Applications.The Shock and Vibration Digest,8(9), 3–10.
[251] L. G. Olson and K.-J. Bathe (1985). Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential.Computers and Structures,21, 21–32. · Zbl 0568.73088
[252] C. Pal and I. Hagiwara (1993). Dynamic analysis of a coupled structural-acoustic problem. Simultaneous multi-modal reduction of vehicle interior noise level by combined optimization.Finite Elements in Analysis and Design,14, 225–234. · Zbl 0800.73443
[253] C. Pal and I. Hagiwara (1994). Optimization of noise level reduction by truncated modal coupled structural-acoustic sensitivity analysis.JSME International Journal, Series C,37(2), 246–251.
[254] O. I. Panič (1965). K voprosu o razrešimosti vnešnich kraevich zadač dlja volnovogo uravnenija i dlja sistemi uravnenij MAXWELLa.Uspechi Math. Nauk,20(1), 221–226.
[255] C. I. Papadopoulos (2001). Redistribution of the low frequency acoustic modes of a room: A finite element-based optimisation method.Applied Acoustics,62, 1267–1285.
[256] M. Papila and R. T. Haftka (2000). Response surface approximation: Noise, error repair, and modelling errors.AIAA Journal,38, 2336–2343.
[257] D. M. Photiadis (1990). The relationship of singular value decomposition to wave-vector filtering in sound radiation problems.Journal of the Acoustical Society of America,88(2), 1152–1159.
[258] P. M. Pinsky (2000). Personal communication.
[259] D. Polyzos, G. Dassics, and D. E. Beskos (1994). On the equivalence of dual reciprocity and particular integral approaches in the bem.Boundary Element Communications,5(6), 285–288.
[260] M. J. D. Powell (1978). A fast algorithm for nonlinearly constrained optimization calculations. In G. A. Watson, editor,Numerical Analysis. Lecture notes in mathematics, volume 630. Springer Verlag, Berlin. · Zbl 0374.65032
[261] O. M. Querin, G. P. Steven, and Y. M. Xie (1998). Evolutionary structural optimization ESO using bidirectional algorithm.Engineering Computations,15, 1031–1048. · Zbl 0938.74056
[262] C. Rajakumar, A. Ali, and S. M. Yunus (1992). A new acoustic interface element for fluid structure interaction problems.International Journal of Numerical Methods in Engineering,33, 369–386. · Zbl 0825.73905
[263] A. Ratle and A. Berry (1998). Use of genetic algorithms for the vibroacoustic optimization of a plate carrying point-masses.Journal of the Acoustical Society of America,104(6), 3385–3397.
[264] P. A. Raviart and J. M. Thomas (1977). A mixed finite element method for second order elliptic problems. InMathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, volume 606. Springer Verlag, Berlin, Heidelberg, New York. · Zbl 0362.65089
[265] J. J. d. Rego Silva (1993).Acoustic and Elastic Wave Scattering using Boundary Elements, volume 18 ofTopics in Engineering. Computational Mechanics Publications, Southampton Boston.
[266] D. Roesems (1997). A new methodology to support an optimized NVH engineering process.Sound and Vibration,31(5) 36–45.
[267] P. J. M. Roozen-Kroon (1992).Structural Optimization of Bells. Dissertation, Technische Universiteit Eidhoven.
[268] H. H. Rosenbrock (1960). An automated method for finding the greatest or least value of a function.Computer Journal,3(4), 175–184.
[269] G. I. Rozvany (2001). Stress ratio and compliance based methods in topology optimization–a critical review.Structural and Multidisciplinary Optimization,21, 109–119.
[270] Y. Saad (1994). ILUT: A dual threshold incompleteLU factorization.Numerical linear algebra with applications,1(4), 387–402. · Zbl 0838.65026
[271] R. R. Salagame, A. D. Belegundu, and G. H. Koopmann (1995). Analytical sensitivity of acoustic power radiated from plates.Journal of Vibration and Acoustics,117, 43–48, January.
[272] G. Sandberg (1995). A new strategy for solving fluid-structure problems.International Journal of Numerical Methods in Engineering,38, 357–370. · Zbl 0820.73072
[273] G. Sandberg and P. A. Görasson (1988). A symmetric finite element formulation for acoustic fluid-structure interaction analysis.Journal of Sound and Vibration,123, 507–515.
[274] A. Sarkissian (1990). Acoustic radiation from finite structures.Journal of the Acoustical Society of America,90, 574–578.
[275] S. Sauter (2000). Variable order panel clustering.Computing-Wien,64(3), 223–262. · Zbl 0959.65135
[276] F. Scarpa (2000). Parametric sensitivity analysis of coupled acoustic-structural systems.Journal of Vibration and Acoustics,122, 109–115, April.
[277] F. Scarpa and G. Curti (1999). A method for the parametric sensitivity of interior acoustostructural coupled systems.Applied Acoustics,58(4), 451–467.
[278] H. A. Schenck (1968). Improved integral formulation for acoustic radiation problems.Journal of the Acoustical Society of America,44, 41–58. · Zbl 0187.50302
[279] S. Schneider (2002). Application of fast methods for acoustic scattering and radiation problems.Journal of Computational Acoustics. In print.
[280] S. Schneider and S. Marburg (2002). Performance of iterative solvers for acoustic problems. Part ii: Acceleration by ilu-type preconditioner.Engineering Analysis with Boundary Elements. In print.
[281] A. J. G. Schoofs, P. H. L. Kessels, A. H. W. M. Kuijpers, and M. H. van Houten (2000). Sound and vibration optimization of carillon bells and MRI scanners. InInternational Workshop on Multidisciplinary Design Optimization, 10 pages, Pretoria, South Africa, August.
[282] A. J. G. Schoofs, M. B. M. Klink, and D. H. van Campen (1992). Approximation of structural optimization problems by means of designed numerical experiments.Structural Optimization,4, 206–212.
[283] A. J. G. Schoofs, P. J. M. Roozen-Kroon, and D. H. van Campen (1994). Optimization of structural and acoustical parameters of bells. In5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 14 pages, Panama City Beach, Florida, September. · Zbl 0830.73048
[284] A. J. G. Schoofs, F. van Asperen, P. Maas, and A. Lehr (1987). A carillon of major-third bells. Part i: Computation of bell profiles using structural optimization.Music Perception,4(3), 245–254.
[285] A. J. G. Schoofs and D. H. van Campen (1998). Analysis and optimization of bells systems. In11th Carillon World Congress, 25 pages, Mechelen and Leuven, Belgium, August. · Zbl 0933.74051
[286] A. F. Seybert, A. Charan, and D. W. Herrin (2000). Survey of numerical methods for sound radiation. InProceedings of the 7th International Congress on Sound and Vibration, volume IV, pages 1887–1894, Garmisch-Partenkirchen, Germany.
[287] A. F. Seybert, D. A. Hamilton, and P. A. Hayes (1998). Prediction of radiated noise from machine components using the BEM and the Rayleigh integral.Noise Control Engineering Journal,46(3), 77–82.
[288] A. F. Seybert, R. A. Seman, and M. D. Lattuca (1998). Boundary element prediction of sound propagation in ducts containing bulk absorbing materials.Transactions of the ASME,120, 976–981, October.
[289] A. F. Seybert, T. W. Wu, and W. L. Li (1991). A coupled FEM/BEM for fluid-structure interaction using Ritz vectors and eigenvectors.ASME Applied Mechanics Division (AMD),128, 171–178. also:NCA Vol. 12.
[290] W. S. Shephard Jr. and K. A. Cunefare (1997). Sensitivity of structural acoustic response to attachment feature scales.Journal of the Acoustical Society of America,102(3), 1612–1619.
[291] Q. Shi, I. Hagiwara, A. Azetsu, and T. Ichkawa (1998). Holographic neural network approximations for acoustic optimization.JSAE Review,19, 361–363.
[292] Q. Shi, I. Hagiwara, S. Azetsu, and T. Ichikawa (1998). Optimization of acoustic problem using holographic neural network.Transactions of the society of automotive engineers of Japan,29(3), 93–97, July. (in Japanese).
[293] J. Sielaff, A. Kropp, A. Irrgang, and H. P. T. Trong (1998). CAE-gestützte Auslegung der Karosserie am Beispiel der Innenraumakustik. InEntwicklungen im Karosseriebau, pages 231–259. VDI-Report 1398.
[294] L. I. Slepyan and S. V. Sorokin (1995). Analysis of structural-acoustic coupling problems by a two-level boundary integral equations method.Journal of Sound and Vibration,184, 195–228. · Zbl 1065.74531
[295] D. C. Smith and R. J. Bernhard (1992). Computation of acoustic shape design sensitivity using a boundary element method.Journal of Vibration and Acoustics,114, 127–132.
[296] J. A. Snyman and N. Stander (1994). New successive approximation method for optimal structural design.AIAA Journal,32(6), 1310–1315. · Zbl 0825.73450
[297] J. Sobieszczanski-Sobieski, S. Kodiyalam, and R. Yang (2001). Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash.Structural and Multidisciplinary Optimization,22(4), 295–306.
[298] B. Soenarko (1993). A boundary element formulation for radiation of acoustic waves from axisymmetric bodies with arbitrary boundary conditions.Journal of the Acoustical Society of America,93(2), 631–639.
[299] C. Soize and J.-C. Michelucci (2000). Structural shape parametric optimization for an internal structural-acoustic problem.AIAA Journal,4, 263–275. · Zbl 0980.76075
[300] S. V. Sorokin (1995). Analysis of vibrations of a spatial acoustic system by the boundary integral equations method.Journal of Sound and Vibration,180, 657–667.
[301] R. L. St. Pierre Jr. and G. H. Koopmann (1995). A design method for minimizing the sound power radiated from plates by adding optimally sized, discrete masses.Journal of Mechanical Design,117, 243–251, June.
[302] R. Statnikov and J. Matusov (1995).Multicriteria optimization and engineering. Chapman & Hall, New York. · Zbl 1257.90090
[303] S. Suzuki (1991). Applications in the automotive industry. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 7, pages 131–146. Computational Mechanics Publications and Elsevier Applied Science.
[304] S. Suzuki, S. Maruyama, and H. Ido (1989). Boundary element analysis of cavity noise problems with complicated boundary conditions.Journal of Sound and Vibrations,130(1), 79–91. · Zbl 1235.74340
[305] K. Svanberg (1987). The method of moving asymptotes–a new method for structural optimization.International Journal for Numerical Methods in Engineering,24, 359–373. · Zbl 0602.73091
[306] Swanson Analysis System Inc., Houston (1999).ANSYS GUI Help Manual, ANSYS Release 5.6.
[307] A. Tadeu and J. Antonio (2000). Use of constant, linear and quadratic boundary elements in 3d wave diffraction analysis.Engineering Analysis with Boundary Elements,24, 131–144. · Zbl 0942.78009
[308] K. C. Tan, T. H. Lee, and E. F. Khor (2001). Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization.IEEE Transactions on Evolutionary Computation,5(6), 565–588. · Zbl 05452163
[309] M. Tinnsten (2000). Optimization of acoustic response–a numerical and experimental comparison.Structural and Multidisciplinary Optimization,19, 122–129.
[310] M. Tinnsten and P. Carlsson (2002). Numerical optimization of violin top plates.Acustica,88, 278–285.
[311] M. Tinnsten, P. Carlsson, and M. Jonsson (2002). Stochastic optimization of acoustic response –a numerical and experimental comparison.Structural and Multidisciplinary Optimization,23(6), 405–411.
[312] M. Tinnsten, B. Esping, and M. Jonsson (1999). Optimization of acoustic response.Structural Optimization,18(1), 36–47.
[313] V.V. Toropov (1989). Simulation approach to structural optimization.Structural Optimization,1, 37–46.
[314] V. V. Toropov, A. A. Filatov, and A. A. Polynkine (1993). Multiparameter structural optimization using FEM and multi-point approximations.Structural Optimization,6, 7–14.
[315] N. Tsujiuchi, T. Koizumi, T. Takenaka, and T. Iwagase (2001). An optimization of rubber mounting for vehicle interior noise reduction.Proceedings-SPIE The International Society for Optical Engineering, Issue 4359, pages 275–281.
[316] F. Ursell (1973). On the exterior problems of acoustic.Proc. Cambridge Philos. Soc.,74, 117–125. · Zbl 0259.35019
[317] M. H. van Houten (1998).Function Approximation Concepts for Multidisciplinary Design Optimization. Dissertation, Technische Universiteit Eindhoven. · Zbl 0909.90275
[318] M. H. van Houten, A. J. G. Schoofs, and D. H. van Campen (1997). Damping of bells using experimental and numerical methods. InProceedings of Fifth International Congress on Sound and Vibration, 8 pages, Adelaide, Australia, December. · Zbl 0895.90182
[319] G. N. Vanderplaats and F. Moses (1973). Structural optimization by method of feasible directions.Computers and Structures,3, 739–755.
[320] G. N. Vanderplaats, H. L. Thomas, and Y. K. Shyy (1991). Review of approximation concepts for structural synthesis.Journal of Computing Systems in Engineering,2(1), 17–25.
[321] N. Vincent, P. Bouvet, D. J. Thompson and P. E. Gautier (1996). Theoretical optimization of track components to reduce rolling noise.Journal of Sound and Vibration,193(1), 161–171.
[322] O. von Estorff (Ed) (2000).Boundary Element in Acoustics: Advances and Applications. WIT Press, Southampton. · Zbl 0987.76515
[323] B. P. Wang (1992). Eigenvalue sensitivity with respect to location of internal stiffness and mass attachments.AIAA Journal,31 (4), 791–794.
[324] S. Wang (1999). Design sensitivity analysis of noise, vibration, and harshness of vehicle body structure.Mechanics of Structures and Machines,27 (3), 317–336.
[325] S. Wang and J. Lee (2001). Acoustic design sensitivity analysis and optimization for reduced exterior noise.AIAA Journal,39(4), 574–580.
[326] X. Wang and K.-J. Bathe (1997). Displacement/pressure based mixed finite element formulations for acoustic fluid structure interaction problems.International Journal for Numerical Methods in Engineering 40, 2001–2017. · Zbl 0886.73073
[327] D. Watts and J. Starkey (1990). Design optimization of response amplitudes in viscously damped structures.Journal of Vibration and Acoustics,112, 275–280, July.
[328] J. H. Wilkinson (1965).The algebraic eigenvalue problem. Oxford University Press. · Zbl 0258.65037
[329] E. L. Wilson, M. W. Yuan, and J. M. Dickens (1982). Dynamic analysis by direct superposition of Ritz vectors.Earthquake Engineering and Structural Dynamics, 10, 813–821.
[330] H.-W. Wodtke and J. S. Lamancusa (1998). Sound power minimization of circular plates through damping layer placement.Journal of Sound and Vibration,215(5), 1145–1163.
[331] S. Y. Woon, O. M. Querin, and G. P. Steven (2001). Structural application of a shape optimization method based on a genetic algoithm.Structural and Multidisciplinary Optimization,22, 57–64.
[332] T. W. Wu (Ed) (2000).Boundary Element in Acoustics: Fundamentals and Computer Codes. WIT Press, Southampton. · Zbl 0987.76500
[333] H. Xia and J. L. Humar (1992). Frequency dependent Ritz vectors.Earthquake Engineering and Structural Dynamics,21, 215–231.
[334] Y. M. Xie and G. P. Steven (1996). Evolutionary structural optimization for dynamic problems.Computers and Structures,58, 1067–1073. · Zbl 0900.73510
[335] Y. M. Xie and G. P. Steven (1997).Evolutionary structural optimization. Springer Verlag, London. · Zbl 0898.73003
[336] Y. G. Xu, G. R. Li, and Z. P. Wu (2001). A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move.Applied Artificial Intelligence,15, 601–631.
[337] I. Yamazaki and T. Inoue (1989). An application of structural-acoustic coupling analysis to boom noise.SAE-paper 891966, pages 1–9.
[338] S. Yang, G. Ni, Y. Li, B. Tian, and R. Li (1998). An universal tabu search algorithm for global optimization of multimodal functions with continuous variables in electromagnetics.IEEE Transactions on Magnetics,34(5), 2901–2904.
[339] T. C. Yang, C. H. Tseng, and S. F. Ling (1986). A boundary-element-based optimization technique for design of enclosure acoustical treatments.Journal of the Acoustical Society of America,98(1), 302–312.
[340] H. J. Yim and S. B. Lee (1997). Design optimization of vehicle structures for idle shake vibration.Proceedings-SPIE The International Society for Optical Engineering, Issue 3089//PT1, pages 432–437.
[341] J. Yoo and P. Hajela (1998). Immune network simulations in multicriterion design.Structural Optimization,18, 85–94.
[342] J. Yoo and P. Hajela (2001). Fuzzy multicriterion design using immune network simulation.Structural and Multidisciplinary Optimization,22, 188–197.
[343] C. B. Zhao, G. P. Steven, and Y. M. Xie (1997). Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure.Structural Optimization,13, 148–154.
[344] O. C. Zienkiewicz (1977).The Finite Element Method. McGraw Hill, Berkshire, 3 edition. · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.