zbMATH — the first resource for mathematics

Solving a system of nonlinear fractional differential equations using Adomian decomposition. (English) Zbl 1099.65137
Summary: The Adomian decomposition metbod is employed to obtain solutions of a system of nonlinear fractional differential equations: $D^{\alpha_i} y_i(x)=N_i(x,y_1, \dots,y_n),\quad y_i^{(k)}(0)=c^i_k,\quad 0\leq k\leq [\alpha_i],\;1\leq i\leq n,$ where $$D^{\alpha_i}$$ denotes the Coputo fractional derivative. Some examples are solved as illustrations, using symbolic computation.

MSC:
 65R20 Numerical methods for integral equations 45J05 Integro-ordinary differential equations 26A33 Fractional derivatives and integrals 68W30 Symbolic computation and algebraic computation
Full Text:
References:
 [1] Abboui, K.; Cherruault, Y., New ideas for proving convergence of decomposition methods, Comput. appl. math., 29, 7, 103-105, (1995) · Zbl 0832.47051 [2] Adomian, G., Solving frontier problems of physics: the decomposition method, (1994), Kluwer Academic Publishers Dordrecht · Zbl 0802.65122 [3] Biazar, J.; Babolian, E.; Islam, R., Solution of the system of Volterra integral equations of the first kind by Adomian decomposition method, Appl. math. comput., 139, 249-258, (2003) · Zbl 1027.65180 [4] Biazar, J.; Babolian, E.; Islam, R., Solution of the system of ordinary differential equations by Adomian decomposition method, Appl. math. comput., 147, 3, 713-719, (2004) · Zbl 1034.65053 [5] Choi, H.W.; Shin, J.G., Symbolic implementation of the algorithm for calculating Adomian polynomials, Appl. math. comput., 146, 257-271, (2003) · Zbl 1033.65036 [6] Daftardar-Gejji, V.; Babakhani, A., Analysis of a system of fractional differential equations, J. math. anal. appl., 293, 511-522, (2004) · Zbl 1058.34002 [7] Daftardar-Gejji, V.; Jafari, H., Adomian decomposition: a tool for solving a system of fractional differential equations, J. math. anal. appl., 301, 2, 508-518, (2005) · Zbl 1061.34003 [8] Diethelm, K., An algorithm for the numerical solution of differential equations of fractional order, Electron. trans. numer. anal., 5, 1-6, (1997) · Zbl 0890.65071 [9] Edwards, J.T.; Ford, N.J.; Simpson, A.C., The numerical solution of linear multi-term fractional differential equations: systems of equations, J. comput. appl. math., 148, 401-418, (2002) · Zbl 1019.65048 [10] Luchko, Y.; Gorenflo, R., An operational method for solving fractional differential equations with the Caputo derivatives, Acta math Vietnam., 24, 2, 207-233, (1999) · Zbl 0931.44003 [11] Miller, K.S.; Ross, B., An introduction to the fractional calculus and fractional differential equations, (1993), Wiley New York · Zbl 0789.26002 [12] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010 [13] Samko, G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Yverdon · Zbl 0818.26003 [14] Shawagfeh, N.T., Analytical approximate solutions for nonlinear fractional differential equations, Appl. math. comput., 131, 517-529, (2002) · Zbl 1029.34003 [15] Wazwaz, A.M., A reliable technique for solving the wave equation in infinite one-dimensional medium, Appl. math. comput., 92, 1-7, (1998) · Zbl 0942.65107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.