×

zbMATH — the first resource for mathematics

Modal modelling of the nonlinear resonant fluid sloshing in a rectangular tank. I: A single-dominant model. (English) Zbl 1098.76012
The authors make the first steps to a more rigorous mathematical analysis of modal systems as well as to mathematical understanding of their applicability. The investigations focus on periodic (steady-state) solutions of asymptotic and pseudospectral multidimensional nonlinear modal systems for describing two-dimensional fluid sloshing due to horizontal harmonic excitations of a rectangular tank.

MSC:
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aliabadi S., Comput. Fluids. 23 pp 535–
[2] Billingham J., J. Fluid Mech. 464 pp 365–
[3] DOI: 10.1137/0147003 · Zbl 0612.76014 · doi:10.1137/0147003
[4] DOI: 10.1017/S0022112087001460 · Zbl 0635.76009 · doi:10.1017/S0022112087001460
[5] DOI: 10.1137/0519069 · Zbl 0648.34047 · doi:10.1137/0519069
[6] DOI: 10.1017/S0022112094004416 · Zbl 0815.76015 · doi:10.1017/S0022112094004416
[7] DOI: 10.1017/S0022112095004010 · Zbl 0920.76012 · doi:10.1017/S0022112095004010
[8] DOI: 10.1016/S0951-8339(99)00026-X · doi:10.1016/S0951-8339(99)00026-X
[9] DOI: 10.1016/S0029-8018(01)00085-3 · doi:10.1016/S0029-8018(01)00085-3
[10] DOI: 10.1006/jfls.1999.0221 · doi:10.1006/jfls.1999.0221
[11] Dodge F. T., AIAA J. 3 pp 685–
[12] Eastham M., Quart. J. Math. 13
[13] Faltinsen O. M., J. Ship. Res. 18 pp 224–
[14] Faltinsen O. M., J. Fluid Mech. 432 pp 167–
[15] Faltinsen O. M., J. Fluid Mech. 470 pp 319–
[16] DOI: 10.1017/S0022112003004816 · Zbl 1053.76006 · doi:10.1017/S0022112003004816
[17] DOI: 10.1017/S002211200400196X · Zbl 1065.76023 · doi:10.1017/S002211200400196X
[18] DOI: 10.1016/j.jfluidstructs.2004.08.001 · doi:10.1016/j.jfluidstructs.2004.08.001
[19] DOI: 10.1017/S0022112099007569 · Zbl 0990.76006 · doi:10.1017/S0022112099007569
[20] DOI: 10.1017/S0022112089000455 · Zbl 0659.76026 · doi:10.1017/S0022112089000455
[21] Feschenko S. F., Methods for Determining Added Fluid Mass in Mobile Cavities (1969)
[22] Frandsen J. B., J. Comput. Phys. 196 pp 54–
[23] DOI: 10.1017/S0022112062000622 · Zbl 0101.20805 · doi:10.1017/S0022112062000622
[24] Gavrilyuk I., Hybrid Meth. Engrg. 2 pp 463–
[25] Gavrilyuk I., Hybrid Meth. Engrg. 3 pp 323–
[26] DOI: 10.1016/0377-0427(83)90029-8 · Zbl 0556.65072 · doi:10.1016/0377-0427(83)90029-8
[27] DOI: 10.1016/0893-9659(92)90112-M · Zbl 0743.65073 · doi:10.1016/0893-9659(92)90112-M
[28] DOI: 10.1016/0168-9274(93)90134-D · Zbl 0785.65089 · doi:10.1016/0168-9274(93)90134-D
[29] DOI: 10.1524/9783486594980 · Zbl 1097.65076 · doi:10.1524/9783486594980
[30] DOI: 10.1063/1.1569917 · Zbl 1186.76228 · doi:10.1063/1.1569917
[31] DOI: 10.1115/1.3097293 · doi:10.1115/1.3097293
[32] La Rocca M., J. Theor. Appl. Fluid Mech. 1 pp 280–
[33] DOI: 10.1016/S0169-5983(99)00039-8 · Zbl 1075.76511 · doi:10.1016/S0169-5983(99)00039-8
[34] Limarchenko O. S., Nonlinear Dynamics of Constructions with a Fluid (1997)
[35] Lukovsky I. A., Nonlinear Oscillations of a Fluid in Tanks of Complex Shape (1975)
[36] Lukovsky I. A., Introduction to Nonlinear Dynamics of a Solid Body with a Cavity Including a Liquid (1990)
[37] Lukovsky I. A., Variational Methods in Nonlinear Dynamics of a Limited Liquid Volume (1995)
[38] Lukovsky I. A., Int. J. Fluid Mech. Res. 29 pp 216–
[39] Mikishev G. I., Experimental Methods in the Dynamics of Spacecraft (1978)
[40] Mikishev G. I., Dynamics of a Rigid Body with Cavities Filled Partially by a Liquid (1968)
[41] DOI: 10.1017/S002211207600030X · Zbl 0333.76004 · doi:10.1017/S002211207600030X
[42] DOI: 10.1017/S0022112084002500 · Zbl 0581.76027 · doi:10.1017/S0022112084002500
[43] DOI: 10.1017/S0022112084002512 · Zbl 0585.76065 · doi:10.1017/S0022112084002512
[44] T. Moan and S. Berge, Proc. of 13th Int. Ship and Offshore Structures Congress 1 (Pergamon, 1997) pp. 59–122.
[45] Moiseyev N. N., Appl. Math. Mech. (PMM) 22 pp 612–
[46] DOI: 10.1007/978-3-642-86452-0 · doi:10.1007/978-3-642-86452-0
[47] DOI: 10.1017/S0022112065000769 · Zbl 0133.43901 · doi:10.1017/S0022112065000769
[48] Nagata M., Eur. J. Mech., B/Fluids. 10 pp 61–
[49] Narimanov G. S., Applied Math. and Mech. (PMM) 21 pp 513–
[50] Narimanov G. S., Nonlinear Dynamics of Flying Apparatus with Liquid (1977)
[51] DOI: 10.1017/S0022112073001618 · Zbl 0273.76006 · doi:10.1017/S0022112073001618
[52] DOI: 10.1023/A:1013911407811 · Zbl 0997.76075 · doi:10.1023/A:1013911407811
[53] DOI: 10.1017/S0022112096002443 · Zbl 0869.76078 · doi:10.1017/S0022112096002443
[54] Ovsyannikov L. V., Nonlinear Problems of the Theory of Surface and Internal Waves (1985) · Zbl 0613.76012
[55] Pawell A., Top. Meth. Nonlin. Anal. 6 pp 311–
[56] DOI: 10.1017/S0022112069000978 · Zbl 0159.57201 · doi:10.1017/S0022112069000978
[57] DOI: 10.1146/annurev.fluid.32.1.241 · doi:10.1146/annurev.fluid.32.1.241
[58] DOI: 10.1512/iumj.1976.25.25085 · Zbl 0371.76013 · doi:10.1512/iumj.1976.25.25085
[59] DOI: 10.1016/0022-247X(79)90028-3 · Zbl 0408.76007 · doi:10.1016/0022-247X(79)90028-3
[60] Sames P. C., J. Ship Res. 46 pp 186–
[61] DOI: 10.1007/s12043-002-0074-8 · doi:10.1007/s12043-002-0074-8
[62] DOI: 10.1017/S0022112090000660 · Zbl 0706.76021 · doi:10.1017/S0022112090000660
[63] DOI: 10.1512/iumj.1976.25.25023 · Zbl 0329.76016 · doi:10.1512/iumj.1976.25.25023
[64] Squire H. B., Proc. Roy. Soc. Lond. Ser. 142 pp 621– · JFM 59.1458.02 · doi:10.1098/rspa.1933.0193
[65] DOI: 10.1017/S0022112060000724 · Zbl 0173.29402 · doi:10.1017/S0022112060000724
[66] DOI: 10.1017/S0022112090000465 · Zbl 0699.76022 · doi:10.1017/S0022112090000465
[67] Wallisch W., Numerische Behandlung von Fortsetzungs- und Bifurcationsproblemen bei Randwertaufgaben (1987) · Zbl 0658.65065
[68] DOI: 10.1017/S0022112094003125 · Zbl 0822.76009 · doi:10.1017/S0022112094003125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.