×

zbMATH — the first resource for mathematics

Nonlinear version of stabilized conforming nodal integration for Galerkin mesh-free methods. (English) Zbl 1098.74732
Summary: A stabilized conforming (SC) nodal integration, which meets the integration constraint in the Galerkin mesh-free approximation, is generalized for non-linear problems. Using a Lagrangian discretization, the integration constraints for SC nodal integration are imposed in the undeformed configuration. This is accomplished by introducing a Lagrangian strain smoothing to the deformation gradient, and by performing a nodal integration in the undeformed configuration. The proposed method is independent to the path dependency of the materials. An assumed strain method is employed to formulate the discrete equilibrium equations, and the smoothed deformation gradient serves as the stabilization mechanism in the nodally integrated variational equation. Eigenvalue analysis demonstrated that the proposed strain smoothing provides a stabilization to the nodally integrated discrete equations. By employing Lagrangian shape functions, the computation of smoothed gradient matrix for deformation gradient is only necessary in the initial stage, and it can be stored and reused in the subsequent load steps. A significant gain in computational efficiency is achieved, as well as enhanced accuracy, in comparison with the mesh-free solution using Gauss integration. The performance of the proposed method is shown to be quite robust in dealing with non-uniform discretization.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M15 Contact in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nayroles, Computational Mechanics 10 pp 307– (1992) · Zbl 0764.65068 · doi:10.1007/BF00364252
[2] Belytschko, International Journal for Numerical Methods in Engineering 37 pp 229– (1994) · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[3] Liu, International Journal for Numerical Methods in Fluids 20 pp 1081– (1995) · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[4] Belytschko, Journal of Computational and Applied Mathematics 74 pp 111– (1996) · Zbl 0862.73058 · doi:10.1016/0377-0427(96)00020-9
[5] Li, International Journal for Numerical Methods in Engineering 45 pp 251– (1999) · Zbl 0945.74079 · doi:10.1002/(SICI)1097-0207(19990530)45:3<251::AID-NME583>3.0.CO;2-I
[6] Chen, Computer Methods in Applied Mechanics and Engineering 139 pp 195– (1996) · Zbl 0918.73330 · doi:10.1016/S0045-7825(96)01083-3
[7] Duarte, Computer Methods in Applied Mechanics and Engineering 139 pp 237– (1996) · Zbl 0918.73328 · doi:10.1016/S0045-7825(96)01085-7
[8] Melenk, Computer Methods in Applied Mechanics and Engineering 139 pp 289– (1996) · Zbl 0881.65099 · doi:10.1016/S0045-7825(96)01087-0
[9] Dolbow, Computational Mechanics 23 pp 219– (1999) · Zbl 0963.74076 · doi:10.1007/s004660050403
[10] Chen, International Journal for Numerical Methods in Engineering 50 pp 435– (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[11] Krongauz, Computer Methods in Applied Mechanics and Engineering 146 pp 371– (1997) · Zbl 0894.73156 · doi:10.1016/S0045-7825(96)01234-0
[12] Bonet, International Journal for Numerical Methods in Engineering 47 pp 1189– (1999) · Zbl 0964.76071 · doi:10.1002/(SICI)1097-0207(20000228)47:6<1189::AID-NME830>3.0.CO;2-I
[13] Randles, Computer Methods in Applied Mechanics and Engineering 139 pp 375– (1996) · Zbl 0896.73075 · doi:10.1016/S0045-7825(96)01090-0
[14] Johnson, International Journal for Numerical Methods in Engineering 39 pp 2725– (1996) · Zbl 0880.73076 · doi:10.1002/(SICI)1097-0207(19960830)39:16<2725::AID-NME973>3.0.CO;2-9
[15] Beissel, Computer Methods in Applied Mechanics and Engineering 139 pp 49– (1996) · Zbl 0918.73329 · doi:10.1016/S0045-7825(96)01079-1
[16] On neighbors, derivatives, and viscosity in particle codes. Proceeding of ECCM Conference, Munich, Germany, August 31-September 3, 1999.
[17] Breitkopf, Computational Mechanics 25 pp 199– (2000) · Zbl 0979.74077 · doi:10.1007/s004660050469
[18] Liszka, Computers and Structures 11 pp 83– (1980) · Zbl 0427.73077 · doi:10.1016/0045-7949(80)90149-2
[19] Chen, Computational Mechanics 22 pp 289– (1998) · Zbl 0928.74115 · doi:10.1007/s004660050361
[20] Schreyer, ASCE Journal of Engineering Mechanics Division EM4 pp 1– (1966)
[21] Mechanics of Materials. Van Nostrand Reinhold: New York, 1972.
[22] Chen, Computer Methods in Applied Mechanics and Engineering 181 pp 117– (2000) · Zbl 0973.74088 · doi:10.1016/S0045-7825(99)00067-5
[23] Stevenson, Philosophical Magazine 34 pp 766– (1949) · doi:10.1080/14786444308521444
[24] Chen, Computational Mechanics 25 pp 137– (2000) · Zbl 0978.74085 · doi:10.1007/s004660050465
[25] Norris, Journal of Mechanics and Physics of Solids 16 pp 1– (1978) · doi:10.1016/0022-5096(78)90010-8
[26] Simo, Computer Methods in Applied Mechanics and Engineering 66 pp 199– (1988) · Zbl 0611.73057 · doi:10.1016/0045-7825(88)90076-X
[27] Chen, Computer Methods in Applied Mechanics and Engineering 187 pp 441– (2000) · Zbl 0980.74077 · doi:10.1016/S0045-7825(00)80004-3
[28] Choudhry, International Journal of Mechanical Sciences 36 pp 189– (1994) · Zbl 0838.73071 · doi:10.1016/0020-7403(94)90069-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.