×

zbMATH — the first resource for mathematics

Mixed finite element formulations of strain-gradient elasticity problems. (English) Zbl 1098.74678
Summary: Theories on intrinsic or material length scales find applications in the modeling of size-dependent phenomena. In elasticity, length scales enter the constitutive equations through the elastic strain energy function, which, in this case, depends not only on the strain tensor but also on gradients of the rotation and strain tensors. In the present paper, the strain-gradient elasticity theories developed by Mindlin and co-workers in the 1960s are treated in detail. In such theories, when the problem is formulated in terms of displacements, the governing partial differential equation is of fourth order. If traditional finite elements are used for the numerical solution of such problems, then \(C^1\) displacement continuity is required. An alternative “mixed” finite element formulation is developed, in which both the displacement and the displacement gradients are used as independent unknowns and their relationship is enforced in an “integral-sense”. A variational formulation is developed which can be used for both linear and non-linear strain-gradient elasticity theories. The resulting finite elements require only \(C^0\) continuity and are simple to formulate. The proposed technique is applied to a number of problems and comparisons with available exact solutions are made.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74B05 Classical linear elasticity
74B20 Nonlinear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aifantis, E.C., On the microstructural origin of certain inelastic models, J. engrg. matl. tech., 106, 326-330, (1984)
[2] Atkinson, C.; Leppington, F.G., The effect of couple stresses on the tip of a crack, Int. J. solids struct., 13, 1103-1122, (1977) · Zbl 0368.73083
[3] Babuška, I., The finite element method with Lagrange multipliers, Numer. math., 20, 179-192, (1973) · Zbl 0258.65108
[4] Brezzi, F., On the existence, uniqueness, and approximations of saddle-point problems arising from Lagrange multipliers, Raipo, B-R2, 129-151, (1974) · Zbl 0338.90047
[5] Brezzi, F.; Bathe, K.-J., A discourse on the stability conditions for mixed finite element formulations, Comput. methods appl. mech. engrg., 82, 27-57, (1990) · Zbl 0736.73062
[6] Cook, T.S.; Weitsman, Y., Strain-gradient effects around inclusions and cavities, Int. J. solids struct., 2, 393-406, (1966)
[7] de Borst, R., Simulation of strain localisation: a reappraisal of the Cosserat continuum, Engrg. comput., 8, 317-332, (1991)
[8] de Borst, R.; Muhlhaus, H.B., Gradient dependent plasticity: formulation and algorithmic aspects, Int. J. numer. methods engrg., 35, 521-540, (1992) · Zbl 0768.73019
[9] de Borst, R.; Pamin, J., Some novel developments in finite element procedures for gradient-dependent plasticity, Int. J. numer. methods engrg., 39, 2477-2505, (1996) · Zbl 0885.73074
[10] de Borst, R.; Sluys, L.J., Localisation in a Cosserat continuum under static and dynamic loading conditions, Comput. methods appl. mech. engrg., 90, 805-827, (1991)
[11] G.E. Exadaktylos, On the problem of the circular hole in an elastic material with microstructure, private communication
[12] Fleck, N.A.; Hutchinson, J.W., A phenomenological theory for strain gradient effects in plasticity, J. mech. phys. solids, 41, 1825-1857, (1993) · Zbl 0791.73029
[13] Fleck, N.A.; Hutchinson, J.W., Strain gradient plasticity, Adv. appl. mech., 33, 295-361, (1997) · Zbl 0894.73031
[14] Fleck, N.A.; Muller, G.M.; Ashby, M.F.; Hutchinson, J.W., Strain gradient plasticity: theory and experiment, Acta metall. mater., 42, 475-487, (1994)
[15] Georgiadis, H., Exact analysis of crack-tip fields in gradient-elastic anti-plane shear deformation, (), 263-272
[16] Germain, P., Sur l’application de la méthode des puissances virtuelles en mécanique des milieux continus, C.R. acad. sci. Paris, 274, 1051-1055, (1972) · Zbl 0242.73005
[17] Germain, P., The method of virtual power in continuum mechanics. part 2: microstructure, SIAM J. appl. math., 25, 556-575, (1973) · Zbl 0273.73061
[18] Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus, J. Mécanique, 12, 235-274, (1973) · Zbl 0261.73003
[19] Herrmann, L.R., Mixed finite elements for couple-stress analysis, (), 1-17
[20] Huang, Y.; Zhang, L.; Guo, T.F.; Hwang, K.C., Mixed mode near-tip fields for cracks in materials with strain gradient effects, J. mech. phys. solids, 45, 439-465, (1997) · Zbl 1049.74521
[21] Koiter, W.T., Couple-stresses in the theory of elasticity. I, Proc. K. ned. akad. wet. (B), 67, 17-29, (1964) · Zbl 0119.39504
[22] Koiter, W.T., Couple-stresses in the theory of elasticity. II, Proc. K. ned. akad. wet. (B), 67, 30-44, (1964) · Zbl 0124.17405
[23] LAPACK Users’ Guide, 3rd ed., 1999, The Society of Industrial and Applied Mathematics
[24] Leblond, J.B.; Perrin, G.; Devaux, J., Bifurcation effects in ductile materials with damage localization, J. appl. mech., 61, 236-242, (1994) · Zbl 0807.73004
[25] Mindlin, R.D., Microstructure in linear elasticity, Arch. rational mech. anal., 10, 51-78, (1964) · Zbl 0119.40302
[26] Mindlin, R.D., Second gradient of strain and surface tension in linear elasticity, Int. J. solids struct., 1, 417-438, (1965)
[27] Mindlin, R.D.; Eshel, N.N., On first-gradient theories in linear elasticity, Int. J. solids struct., 4, 109-124, (1968) · Zbl 0166.20601
[28] Mindlin, R.D.; Tiersten, H.F., Effects of couple-stresses in linear elasticity, Arch. rational mech. anal., 11, 415-448, (1962) · Zbl 0112.38906
[29] Papanastasiou, P.; Vardoulakis, I., Numerical analysis of progressive localization with application to borehole stability, Int. J. numer. anal. methods geomech., 16, 183-198, (1992)
[30] Pijaudier-Cabot, G.; Bazant, Z.P., Nonlocal damage theory, J. engrg. mech. ASCE, 113, 1512-1533, (1987)
[31] Providas, E.; Katis, M.A., Finite element method in plane Cosserat elasticity, (), 47-56
[32] Ramaswamy, S.; Aravas, N., Finite element implementation of gradient plasticity models. part I: gradient-dependent yield functions, Comput. methods appl. mech. engrg., 163, 11-32, (1998) · Zbl 0961.74063
[33] Ramaswamy, S.; Aravas, N., Finite element implementation of gradient plasticity models. part II: gradient-dependent evolution equations, Comput. methods appl. mech. engrg., 163, 33-53, (1998) · Zbl 0961.74063
[34] Ru, C.Q.; Aifantis, E.C., A simple approach to solve boundary-value problems in gradient elasticity, Acta mech., 101, 59-68, (1993) · Zbl 0783.73015
[35] Shu, J.Y.; Fleck, N.A., The prediction of a size effect in microindentation, Int. J. solids struct., 35, 1363-1383, (1999) · Zbl 0923.73056
[36] Shu, J.Y.; Barlow, C.Y., Strain gradient effects on microscopic strain field in a metal matrix composite, Int. J. plast., 16, 563-591, (2000) · Zbl 1010.74005
[37] Shu, J.Y.; King, W.E.; Fleck, N.A., Finite elements for materials with strain gradient effects, Int. J. numer. methods engrg., 44, 373-391, (1999) · Zbl 0943.74072
[38] Smyshlyaev, V.P.; Fleck, N.A., The role of strain gradients in the grain size effect for polycrystals, J. mech. phys. solids, 44, 465-496, (1996) · Zbl 1054.74553
[39] Sternberg, E.; Muki, R., The effect of couple-stresses on the stress concentration around a crack, Int. J. solids struct., 3, 69-95, (1996)
[40] Toupin, R.A., Elastic materials with couple-stresses, Arch. rational mech. anal., 11, 385-414, (1962) · Zbl 0112.16805
[41] Tvergaard, V.; Needleman, A., Effects of nonlocal damage in porous plastic solids, Int. J. solids struct., 32, 1063-1077, (1995) · Zbl 0866.73060
[42] Unger, D.J.; Aifantis, E.C., Strain gradient elasticity theory for antiplane shear cracks. part I: oscillatory displacements, Theoret. appl. fracture mech., 34, 243-252, (2000)
[43] Unger, D.J.; Aifantis, E.C., Strain gradient elasticity theory for antiplane shear cracks. part II: monotonic displacements, Theoret. appl. fracture mech., 34, 253-265, (2000)
[44] Vardoulakis, I., Shear-banding and liquefaction in granular materials on the basis of a Cosserat continuum theory, Ingenieur-archiv, 59, 106-113, (1989)
[45] Vardoulakis, I.; Aifantis, E.C., Gradient dependent dilatancy and its implications in shear banding and liquefaction, Ingenieur-archiv, 59, 197-208, (1989)
[46] Vardoulakis, I.; Sulem, J., Bifurcation analysis in geomechanics, (1995), Blackie/Chapman & Hall London · Zbl 0900.73645
[47] Weitsman, Y., Couple-stress effects on stress concentration around a cylindrical inclusion in a field of uniaxial tension, J. appl. mech., 424-428, (1965)
[48] Weitsman, Y., Strain-gradient effects around cylindrical inclusions and cavities in a field of cylindrically symmetric tension, J. appl. mech., 57-67, (1966)
[49] Xia, Z.C.; Hutchinson, J.W., Crack tip fields in strain gradient plasticity, Int. J. fracture, 92, 325-348, (1998)
[50] Zhang, L.; Huang, Y.; Chen, J.Y.; Hwang, K.C., The mode III full-field solution in elastic materials with strain gradient effects, J. mech. phys. solids, 44, 1621-1648, (1998)
[51] Zienkiewicz, O.C.; Taylor, R.L., The finite element method, (2000), Butterworth/Heinemann London · Zbl 0991.74002
[52] Zienkiewicz, O.C.; Taylor, R.L., The finite element patch test revised. A computer test for convergence, validation and error estimates, Comput. methods appl. mech. engrg., 149, 223-254, (1997) · Zbl 0918.73134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.