zbMATH — the first resource for mathematics

On link invariants and topological string amplitudes. (English) Zbl 1097.81742
Summary: We explicitly show that the new polynomial invariants for knots, upto nine crossings, agree with the Ooguri-Vafa conjecture relating Chern-Simons gauge theory to topological string theory on the resolution of the conifold.

81T45 Topological field theories in quantum mechanics
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
81T13 Yang-Mills and other gauge theories in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Witten, E., Quantum field theory and the Jones polynomial, Commun. math. phys., 121, 351, (1989) · Zbl 0667.57005
[2] Kauffman, L.; Lickorish, W.B.R.; Guadagnini, E., Knots and physics, An introduction to knot theory, The link invariants of chern – simons field theory, (1993), Walter de Gruyter
[3] Gopakumar, R.; Vafa, C., M-theory and topological strings, I
[4] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence · Zbl 1026.81029
[5] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. phys. B, 577, 419, (2000) · Zbl 1036.81515
[6] Labastida, J.M.F.; Marino, M., Polynomial invariants for torus knots and topological strings · Zbl 1018.81049
[7] Ramadevi, P.; Govindarajan, T.R.; Kaul, R.K., Three-dimensional chern – simons theory as a theory of knots and links (III). compact semisimple group, Nucl. phys. B, 402, 548, (1993) · Zbl 0941.57500
[8] P. Ramadevi, Chern-Simons theory as a theory of knots and links, Ph.D. Thesis · Zbl 1260.57020
[9] Labastida, J.M.F.; Llatas, P.M.; Ramallo, A.V., Knot operators in chern – simons theory, Nucl. phys. B, 348, 651, (1991)
[10] Witten, E., Chern – simons gauge theory as a string theory · Zbl 0844.58018
[11] Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millett, K.; Ocneanu, A., A new polynomial invariant of knots and links, Bull. A.M.S., 12, 239, (1985) · Zbl 0572.57002
[12] Antoniadis, I.; Gava, E.; Narain, K.S.; Taylor, T.R., Topological amplitudes in string theory, Nucl. phys. B, 413, 162, (1994) · Zbl 1007.81522
[13] Fulton, W.; Harris, J., Representation theory, A first course, (1991), Springer-Verlag · Zbl 0744.22001
[14] J. Birman, Braids, Links and Mapping class Groups, Annals of Mathematics Studies, 82, Princeton University Press · Zbl 0305.57013
[15] Lickorish, W.B.R.; Millett, K.C., A polynomial invariant of oriented links, Topology, 26, 107, (1987) · Zbl 0608.57009
[16] Labastida, J.M.F.; Marino, M.; Vafa, C., Knots, links and branes at large N · Zbl 0990.81545
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.