×

zbMATH — the first resource for mathematics

Detection of cavities in Helmholtz-type equations using the boundary element method. (English) Zbl 1097.80004
The detection of interior circular cavities in acoustics is investigated using the boundary element method combined with least squares procedure. Uniqueness holds for one cavity (circular) but I am not sure that the result for multiple cavities (circular) is proved yet. The method can easily be extended to the detection of interior spherical cavities.

MSC:
80M15 Boundary element methods applied to problems in thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kubo, S., Inverse problems related to the mechanics and fracture of solids and structures, JSME int. J., 31, 157-166, (1988)
[2] Hadamard, J., Lectures on Cauchy problem in linear partial differential equations, (1923), Oxford University Press London · JFM 49.0725.04
[3] Beck, J.V.; Blackwell, B.; St. Clair, C.R., Inverse heat conduction: ill-posed problems, (1985), Wiley-Interscience New York · Zbl 0633.73120
[4] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering, (1992), Springer Verlag Berlin · Zbl 0760.35053
[5] Ikehata, M., Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inv. prob., 15, 1231-1241, (1999) · Zbl 0943.35103
[6] Ikehata, M.; Ohe, T., A numerical method for finding the convex hull of polygonal cavities using the enclosure method, Inv. prob., 18, 111-124, (2002) · Zbl 0992.35118
[7] Tanaka, M.; Masuda, Y., Boundary element method applied to some inverse problems, Engrg. anal., 3, 138-143, (1986)
[8] Tanaka, M.; Nakamura, M.; Nakano, T., Defect shape identification by the elastodynamic boundary element method using strain responses, (), 137-151
[9] Tanaka, M.; Nakamura, M.; Nakano, T., Defect shape identification by boundary element method combined with method of multiple force applications, (), 319-328
[10] Bezerra, L.M.; Saigal, S., A boundary element formulation for the inverse elastostatics problem (IESP) of flaw detection, Int. J. numer. meth. engrg., 36, 2189-2202, (1993) · Zbl 0790.73071
[11] Mellings, S.C.; Aliabadi, M.H., Flaw identification using the boundary element method, Int. J. numer. meth. engrg., 38, 399-419, (1995) · Zbl 0846.73075
[12] Kassab, A.J.; Moslehy, F.A.; Daryapurkar, A.B., Nondestructive detection of cavities by an inverse elastostatics boundary element method, Engrg. anal. bound. elements, 13, 45-55, (1994)
[13] Ulrich, T.W.; Moslehy, F.A.; Kassab, A.J., A BEM based pattern search solution for a class of inverse elastostatic problems, Int. J. solids struct., 33, 2123-2131, (1996) · Zbl 0900.73918
[14] Mallardo, V.; Aliabadi, M.H., A BEM sensitivity and shape identification analysis for acoustic scattering in fluid-solid problems, Int. J. numer. meth. engrg., 41, 1527-1541, (1998) · Zbl 0907.73074
[15] Rus, G.; Gallego, R., Optimization algorithms for identification inverse problems with the boundary element method, Engrg. anal. bound. elements, 26, 315-327, (2002) · Zbl 1053.74050
[16] Gallego, R.; Rus, G., Identification of cracks and cavities using the topological boundary integral equation, Comput. mech., 33, 154-163, (2004) · Zbl 1067.74025
[17] Marin, L.; Elliott, L.; Ingham, D.B.; Lesnic, D., Identification of material properties and cavities in two-dimensional linear elasticity, Comput. mech., 31, 293-300, (2003) · Zbl 1038.74553
[18] Divo, E.A.; Kassab, A.J.; Rodriguez, F., An efficient singular superposition technique for cavity detection and shape optimization, (), 241-250
[19] A.J. Kassab, E.A. Divo, A. Hadjinicolaou, A hybrid BEM/singular superposition algorithm to solve the inverse geometric problem applied to subsurface cavity detection, in: M. Tanaka, C.A. Brebbia, R. Shaw (Eds.), Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004.
[20] Beskos, D.E., Boundary element method in dynamic analysis: part II (1986-1996), ASME appl. mech. rev., 50, 149-197, (1997)
[21] Chen, J.T.; Wong, F.C., Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition, J. sound vib., 217, 75-95, (1998)
[22] Harari, I.; Barbone, P.E.; Slavutin, M.; Shalom, R., Boundary infinite elements for the Helmholtz equation in exterior domains, Int. J. numer. meth. engrg., 41, 1105-1131, (1998) · Zbl 0911.76035
[23] Hall, W.S.; Mao, X.Q., A boundary element investigation of irregular frequencies in electromagnetic scattering, Engrg. anal. boundary elem., 16, 245-252, (1995)
[24] Goswami, P.P.; Rudophi, T.J.; Rizzo, F.J.; Shippy, D.J., A boundary element model for acoustic interaction with applications in ultrasonic NDE, J. nondestr. eval., 9, 101-112, (1990)
[25] Kraus, A.D.; Aziz, A.; Welty, J., Extended surface heat transfer, (2001), John Wiley & Sons New York
[26] Kellogg, O.D., Foundations of potential theory, (1923), New Haven Dover · Zbl 0053.07301
[27] Kim, S.; Yamamoto, M., Uniqueness in the two-dimensional inverse conductivity problems in determining convex polygonal supports: case of variable conductivity, Inv. prob., 20, 495-506, (2004) · Zbl 1081.35142
[28] Morassi, A.; Rosset, E., Stable determination of cavities in elastic bodies, Inv. prob., 20, 453-480, (2004) · Zbl 1073.35212
[29] Chen, G.; Zhou, J., Boundary element methods, (1992), Academic Press London
[30] Marin, L.; Elliott, L.; Heggs, P.J.; Ingham, D.B.; Lesnic, D.; Wen, X., An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation, Comput. methods appl. mech. engrg., 192, 709-722, (2003) · Zbl 1022.78012
[31] Marin, L.; Elliott, L.; Heggs, P.J.; Ingham, D.B.; Lesnic, D.; Wen, X., Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations, Comput. mech., 31, 367-377, (2003) · Zbl 1047.65097
[32] Gill, P.E.; Murray, W.; Wright, M.H., Practical optimization, (1981), Academic Press London · Zbl 0503.90062
[33] Chen, K., Improving the accuracy of DRBEM for convective partial differential equations, Engrg. anal. bound. elements, 23, 639-644, (1999) · Zbl 0973.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.