×

zbMATH — the first resource for mathematics

Almost exponential decay near Maxwellian. (English) Zbl 1096.82010
The paper addresses the issue of the relaxation of general solutions to kinetic equations of the Boltzmann type (for gases) and Vlasov-Maxwell-Boltzmann (VMB) type (for plasmas) to the stationary solution corresponding to the Maxwellian distribution. The equations are considered in the three-dimensional space with periodic boundary conditions. The systems considered include the Boltzmann equation with a soft potential of the interaction between atoms, the VMB system, and the Landau-Maxwell system for relativistic charged particles. Using a family of energy estimates, the paper proves convergence of the nonstationary distributions to the Maxwellian solution with any polynomial (i.e., non-exponential) rate in time.

MSC:
82B40 Kinetic theory of gases in equilibrium statistical mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
82D05 Statistical mechanics of gases
82D10 Statistical mechanics of plasmas
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF01197579 · Zbl 0434.76065
[2] DOI: 10.1007/BF01197752 · Zbl 0434.76066
[3] DOI: 10.1080/03605300008821513 · Zbl 0951.35130
[4] DOI: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q · Zbl 1029.82032
[5] DOI: 10.1051/cocv:2002036 · Zbl 1092.82032
[6] DOI: 10.1007/s00222-004-0389-9 · Zbl 1162.82316
[7] DOI: 10.1007/s00220-002-0729-9 · Zbl 1042.76053
[8] DOI: 10.1007/s00205-003-0262-9 · Zbl 1044.76056
[9] DOI: 10.1007/s00222-003-0301-z · Zbl 1029.82034
[10] DOI: 10.1081/PDE-200059299 · Zbl 1112.76061
[11] DOI: 10.1007/s00220-004-1151-2 · Zbl 1113.82070
[12] DOI: 10.1007/s002200050631 · Zbl 0944.35066
[13] DOI: 10.3792/pja/1195519027 · Zbl 0312.35061
[14] DOI: 10.2977/prims/1195183569 · Zbl 0538.45011
[15] DOI: 10.1007/s00220-002-0777-1 · Zbl 1041.82018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.