×

zbMATH — the first resource for mathematics

Deformation theory of representable morphisms of algebraic stacks. (English) Zbl 1096.14007
The central statement of deformation theory goes as follows: The obstruction for the existence of first-order deformations lies in the group \(\text{ Ext}^2(L_{X/Y}^\bullet, f^*I)\). In case this obstruction vanishes, the set of isomorphism classes of first-order deformations is a torsor under \(\text{ Ext}^1(L_{X/Y}^\bullet, f^*I)\), and the automorphism group of a given first-order deformation is \(\text{ Ext}^0(L_{X/Y}^\bullet, f^*I)\). This results, and in fact the whole theory of the cotangent complex \(L_{X/Y}^\bullet\), is due to L. Illusie [“Complexe cotangent et déformations I”. Lect. Notes Math. 239 (1971; Zbl 0224.13014)], and worked out in the general context of ringed topoi.
Olsson extends these and related results further to representable morphisms between Artin stacks, using the cotangent complex for Artin stacks as defined by G. Laumon and L. Moret-Bailly [“Champs algébriques”, Ergebn. Math. Grenzgeb. 39 (2000; Zbl 0945.14005)]. The point is that the latter cotangent complex is not defined as the cotangent complex of a morphism of ringed topoi. In fact, it is not a complex at all, rather a projective system of complexes. Thus Illusie’s theory does not immediately apply to this situation.
The idea of this paper is to replace the involved Artin stacks \(\mathcal{S}\) by the simplicial algebraic space \(S^\bullet\) coming from a smooth cover \(S\rightarrow \mathcal{S}\), and then relate Illusie’s cotangent complex of this simplicial algebraic space to the cotangent complex of Laumon and Moret-Bailly.

MSC:
14D15 Formal methods and deformations in algebraic geometry
14A20 Generalizations (algebraic spaces, stacks)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aoki, M.: Deformation theory of algebraic stacks. Comp. Math. 141, 19–34 (2005) · Zbl 1071.14004
[2] Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974) · Zbl 0317.14001
[3] Artin, M., Grothendieck, A., Verdier, J.-L.: Théorie des topos et cohomologie étale des schémas. Lecture Notes in Mathematics 269, 270, 305, Springer-Verlag, Berlin 1971
[4] Behrend, K., Fantechi, B.: The intrinsic normal cone. Inv. Math. 128, 45–88 (1997) · Zbl 0909.14006
[5] Deligne, P.: Théorie de Hodge. III. Inst. Hautes Études Sci. Publ. Math. 44, 5–78 (1974) · Zbl 0237.14003
[6] Demazure, M., Grothendieck, A.: Schémas en groupes. Lecture Notes in Mathematics 151, 152, 153, Springer-Verlag, Berlin 1970 · Zbl 0209.24201
[7] Dieudonné, J., Grothendieck, A.: Éléments de géométrie algébrique. Inst. Hautes Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967).
[8] Grothendieck, A.: Revêtements Étales et Groupe Fondamental. Lecture Notes in Mathematics 224, Springer–Verlag, Berlin 1971 · Zbl 0234.14002
[9] Grothendieck, A.: Catégories cofibrées additives et Complexe cotangent relatif. Lecture Notes in Mathematics 79, Springer–Verlag, Berlin 1968 · Zbl 0201.53803
[10] Illusie, L.: Complexe cotangent et déformations. I. Lecture Notes in Mathematics 239, Springer-Verlag, Berlin 1971 · Zbl 0224.13014
[11] Illusie, L.: Complexe cotangent et déformations. II. Lecture Notes in Mathematics 283, Springer-Verlag, Berlin 1972 · Zbl 0238.13017
[12] Knutson, D.: Algebraic spaces. Lecture Notes in Mathematics 203, Springer-Verlag, Berlin 1971 · Zbl 0221.14001
[13] Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergebnisse der Mathematik 39, Springer-Verlag, Berlin 2000 · Zbl 0945.14005
[14] Olsson, M.: The logarithmic cotangent complex. preprint 2002 · Zbl 1095.14016
[15] Olsson, M.: Sheaves on Artin stacks. preprint 2005 · Zbl 1137.14004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.