×

zbMATH — the first resource for mathematics

On the rules of intermediate logics. (English) Zbl 1096.03025
Summary: If the Visser rules are admissible for an intermediate logic, they form a basis for the admissible rules of the logic. How to characterize the admissible rules of intermediate logics for which not all of the Visser rules are admissible is not known. In this paper we give a brief overview of results on admissible rules in the context of intermediate logics. We apply these results to some well-known intermediate logics. We provide natural examples of logics for which the Visser rules are derivable, admissible but nonderivable, or not admissible.

MSC:
03B55 Intermediate logics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baaz, M., Ciabattoni, A., Fermüller, C.F.: Hypersequent Calculi for Gödel Logics-a Survey. J. Logic Comput. To appear · Zbl 1051.03046
[2] Blackburn, P., Rijke, de M., Venema, Y.: Modal Logic. Cambridge University Press, 2001 · Zbl 0988.03006
[3] Chagrov, A., Zakharyaschev, M., Modal Logic. Oxford University Press, 1998
[4] Dummett, M.: A propositional logic with denumerable matrix. J. Symbolic Logic 24, 96–107 (1959) · Zbl 0089.24307
[5] Fiorentini, C.: Kripke Completeness for Intermediate Logics. PhD-thesis, University of Milan, 2000 · Zbl 1045.03030
[6] Gabbay, D., de Jongh, D.: A sequence of decidable finitely axiomatizable intermediate logics with the disjunction property. J. Symbolic Logic 39, 67–78 (1974) · Zbl 0289.02032 · doi:10.2307/2272344
[7] Ghilardi, S.: Unification in intuitionistic logic. J. Symbolic Logic 64, 859–880 (1999) · Zbl 0930.03009 · doi:10.2307/2586506
[8] Ghilardi, S.: A resolution/tableaux algorithm for projective approximations in IPC. Logic J. IGPL. 10, 229–243 (2002) · Zbl 1005.03504 · doi:10.1093/jigpal/10.3.229
[9] Gödel, K.: Über unabhängigkeitsbeweise im Aussagenkalkül. Ergebnisse eines mathematischen Kolloquiums 4, 9–10 (1933) · JFM 59.0865.02
[10] Harrop, R.: Concerning formulas of the types in intuitionistic formal systems. J. Symbolic Logic 25, 27–32 (1960) · Zbl 0098.24201 · doi:10.2307/2964334
[11] Iemhoff, R.: Provability logic and admissible rules. PhD thesis, University of Amsterdam, 2001 · Zbl 0986.03013
[12] Iemhoff, R.: A(nother) characterization of Intuitionistic Propositional Logic. Ann. Pure Appl. Logic 113, 161–173 (2001) · Zbl 0988.03045 · doi:10.1016/S0168-0072(01)00056-2
[13] Iemhoff, R.: Towards a proof system for admissibility. Computer Science Logic ’03. LNCS vol. 2803, Springer, 2003, pp. 255–270 · Zbl 1116.03304
[14] Iemhoff, R.: Intermediate logics and Visser’s rules. Notre Dame J. Formal Logic 46 (1), (2005) · Zbl 1102.03032
[15] Kreisel, G., Putnam, H.: Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Archiv für mathematische Logic und Grundlagenforschung 3, 74–78 (1957) · Zbl 0079.00702 · doi:10.1007/BF01988049
[16] Medvedev, Ju.T.: Finite problems. Soc. Math. Dokl. 3, 227–230 (1962) · Zbl 0286.02028
[17] Minari, P., Wronski, A.: The property (HD) in intermediate logics. Rep. Math. Logic 22, 21–25 (1988) · Zbl 0696.03009
[18] Nishinura, I.: On formulas of one propositional variable in intuitionistic propositional calculus. J. Symbolic Logic 25 (4), 327–331 (1960) · Zbl 0108.00302
[19] van Oosten, J.: Realizability and independence of premise. Technical report, University Utrecht, 2004 · Zbl 1081.03060
[20] Prucnal, H.: On two problems of Harvey Friedman. Studia Logica 38, 257–262 (1979) · Zbl 0436.03018 · doi:10.1007/BF00405383
[21] Rose, G.F.: Propositional calculus and realizability. Trans. Am. Math. Soc. 75, 1–19 (1953) · Zbl 0053.19901 · doi:10.1090/S0002-9947-1953-0055952-4
[22] Roziere, P.: Regles Admissibles en calcul propositionnel intuitionniste. PhD-thesis (in french), Université Paris VII, 1992
[23] Rybakov, V.V.: A Criterion for Admissibility of Rules in the Modal System S4 and the Intuitionistic Logic. Algebra and logic 23 (5), 369–384 (1984) · Zbl 0598.03013 · doi:10.1007/BF01982031
[24] Rybakov, V.V.: Admissibility of Logical Inference Rules. Elsevier, 1997 · Zbl 0872.03002
[25] Smoryński, C.: Applications of Kripke Models. Mathematical Investigations of Intuitionistic Arithmetic and Analysis, Springer, 1973
[26] Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, vol. I, North-Holland, 1988 · Zbl 0661.03047
[27] Visser, A.: Substitutions of \(\Sigma\)-sentences: explorations between intuitionistic propositional logic and intuitionistic arithmetic. Ann. Pure Appl. Logic 114 (1–3), 227–271 (2002) · Zbl 1009.03029
[28] Visser, A.: Rules and Arithmetics. Notre Dame J. Formal Logic 40 (1), 116–140 (1999) · Zbl 0968.03071
[29] Wronski, A.: Remarks on intermediate logics with axiomatizations containing only one variable. Reports on Mathematical Logic 2, 63–75 (1974) · Zbl 0312.02024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.