×

zbMATH — the first resource for mathematics

An integrated aggregate and detailed planning in a multi-site production environment using linear programming. (English) Zbl 1095.90534
Summary: This paper considers production planning of multi-site production facilities with substitutable capacities serving multiple selling locations where the supplying plant is dynamically determined. A linear programming model is developed to produce the time and capacity aggregated plan and the detailed plan simultaneously to overcome the drawback of the hierarchical planning approaches of not yielding a feasible and/or an optimal lower-level (i.e., detailed) plan. Different time grids and planning horizons for aggregate and detailed planning are appropriately used to reduce the computational burden. Factors such as the limitations of storage space, raw material availability and production capacity at plants and a requirement of maintaining a minimum level of inventory buffer have been modelled. The proposed methodology generated high quality production and dispatch plans when applied to a consumer goods company case.

MSC:
90B30 Production models
90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1287/inte.25.1.69
[2] DOI: 10.1287/opre.29.4.744 · Zbl 0464.90032
[3] DOI: 10.1016/0377-2217(84)90129-2
[4] DOI: 10.1287/opre.29.4.717 · Zbl 0464.90033
[5] DOI: 10.1287/opre.30.2.232 · Zbl 0481.90040
[6] DOI: 10.1016/0377-2217(95)00060-4 · Zbl 0902.90072
[7] DOI: 10.1016/j.omega.2004.05.004
[8] DOI: 10.1016/0377-2217(94)90419-7 · Zbl 0805.90051
[9] DOI: 10.1016/j.rcim.2003.10.004
[10] DOI: 10.1007/s00291-002-0117-z · Zbl 1035.90007
[11] Haq NA, Int. J. Prod. Econ. 39 pp 39– (1991)
[12] DOI: 10.1016/0925-5273(95)00093-3
[13] DOI: 10.1287/inte.10.6.4
[14] Lee YH, Proceedings of the 2000 Winter Simulation Conference pp 1252– (2000)
[15] Lee SM, J. Prod. Invent. Manage. 15 pp 79– (1974)
[16] DOI: 10.1016/0272-6963(89)90014-4
[17] DOI: 10.1080/09537280410001724287
[18] DOI: 10.1080/0953728031000154264
[19] DOI: 10.1287/inte.15.4.1
[20] DOI: 10.1287/inte.23.3.68
[21] DOI: 10.1016/0965-9978(95)00117-4 · Zbl 05470400
[22] DOI: 10.1016/0377-2217(91)90202-7
[23] DOI: 10.1016/0360-8352(93)90226-N
[24] DOI: 10.1016/S0925-5273(98)00076-0
[25] DOI: 10.1016/0377-2217(93)90126-8
[26] DOI: 10.1016/0305-0483(87)90025-9
[27] DOI: 10.1016/0272-6963(82)90019-5
[28] DOI: 10.1016/0167-188X(82)90058-1
[29] DOI: 10.1016/0098-1354(96)00220-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.